SEARCHES FOR SUPERSYMMETRY WITH THE CMS EXPERIMENT

On behalf of the CMS Collaboration

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUSY

Altan CAKIR DESY

Ankara YEF Günleri 27-30 Aralik 2011, Ankara University, Ankara, Turkey.

OUTLINE

Supersymmetry (SUSY) – Symmetry of the Nature?

SUSY Production at Colliders

□The Strategy

□The Large Hadron Collider (LHC) Experiment

□The Compact Muon Solenoid (CMS) Detector

SUSY Analyses in the CMS Collaboration

Hadronic SUSY Searches

Leptonic SUSY Searches

- Interpretation of the Physics Results
- Summary

- Standard Model (SM) describes known particles/ forces. Extremely successful at low energy, but several problems:
 - Hierarchy problem
 - Gauge coupling and non-unification
 - Dark matter (DM): preferred explanation WIMP mass
 - O(100 GeV) -> no SM candidate
- SUSY: popular extension "super-partners" to each S
 - Solves many problems intri-
 - Lightest SUSY particle (LSF particle EWSB scale~100 G
 - Implies DM may be produce

ογιατικό στορτοτιό βααβιτιος

SUSY PRODUCTION AT COLLIDERS

Many SUSY models postulate conserved quantum number:

DES

□ SUSY particles produced in pairs (usually strongly produced squarks/gluinos)

LSP is stable

❑ Squarks/gluinos decay via cascade, producing jets, (leptons), LSP's spectacular events with several high p_T jets + (leptons) + E^T_{miss}!

 \Box Strategy: search for excess of events w/ large E^{T}_{miss} , HT (sum of jet p_{T} 's)!

THE LARGE HADRON COLLIDER

- Provides proton-proton collider at 7 TeV center-of-mass-energy
- Data collected by four experiments : CMS, ATLAS, LHCb, ALICE

THE LARGE HADRON COLLIDER: Detectors

Ankara YEF Gunleri 2011, Ankara University, Ankara

THE CMS EXPERIMENT: Design

E CMS EXPERIMENT AND LEPTON-ID

- Most particles are hadrons → electrons/muons very rare
- Electrons: electromagnetic shower in EM calorimeter → deposit full energy
- Muons: minimum ionizing → penetrate deeply into muon system

PHYSICS AT THE LHC

SUSY ANALYSES HAT THE GM 2001-LAR QRATIONLESS

SUSY Searches in the CMS Collaboration Jets + MET Single Opposite Same-sign Multi-lep

Jets + MET	Single	Opposite-	Same-sign	Multi-lepton	Di-photon +	Photon +
	lepton +	sign di-	di-lepton +		jet + MET	lepton +
	Jets + MET	lepton + jets	jets + MET			MET
		+ MET				

DES

HADRONIC SUSY SEARCHES

q

 $\tilde{\chi}_1^0$

 \tilde{v}^0

arch – relies on precise determination of all SM backgrounds with robust data-driven

characterise SUSY pair- production ces QCD background substantially rity conserving SUSY cting *sparticles* dominate / of squarks/ gluinos stable LSP (χ_1^0) ture of $\mathbf{E}^{\mathsf{T}}_{\mathsf{miss}}$ and Jets

Je

 \boldsymbol{q}

HADRONIC SUSY SEARCHES

Jets+E^T_{miss} analysis with the kinematic variable α_T : Background estin

✓ The comparisons between data and MC simulation for the H_T variable and the number of reconstructed jets per event, **before the redutivement** on α_T .

$$H_T = \sum \left| p_T, i \right| \qquad H_T = \left| -\sum p_T, i \right|$$

✓ The ratio $\mathbf{R}\alpha_{T}$ exhibits <u>no dependence</u> on <u>HT</u> if **0.55** is chosen such that the numerator of the ratio in all H_T bins is dominated by tt, W +jets and Z → vv+jets events

$$\in R_{\alpha_T} = \frac{\alpha_T > 0.55}{\alpha_T < 0.55}$$

- Electroweak backgrounds: real E^T_{miss} -
- QCD there is no significant contributi from QCD

Data – ratio consistent with SM background predictions Use data-driven techniques to estimate W, top, from W -> *Iv*, Z background from Gamma +Jets

10⁻¹

0.2 0.4 0.6

0.8

Jets+E^T_{miss} analysis with the kinematic variable α_T : Interpretation of Physics Results 2011

SUSY-PAS-11-003

No evidence, unfortunately, for SUSY in the hadronic channel yet, Up to 1.1fb-1 has been analyzed.

Jets+E^T_{miss} analysis with b-quark Jets

SUSY-PAS-11-006 Schematic diagram indicating the various event samples used for background evaluvation

k

Jets+E^T_{miss} analysis with b-quark Jets

Altan CAKIR | Searches Supersymmetry with the CMS Experiment | December 2011 | Page 16

DÈŚY

Jets+E^T_{miss} analysis with b-quark Jets: Summary

DÈŚY

LEPTONIC SUSY SEARCHES

- Jets+Lep +E^T_{miss} analysis: Same-Sign Di-Lepton Search (2011, L = 0.98) Sam - D pairs extremely rare in SM, but appear naturally in many the Standard Model (BSM) scenarios.
 - SUSY, Universal Extra Dimensions, SS top pair production, Heavy Majorana neutrinos.
 - Dominant SM backgrounds:
 - □ ttbar with "fake" leptons (b/c <-> e/µ)
 - □ Charge mis-reconstruction
 - □ Rare SM processes: qq →q'q'W^{+/-}W^{+/-}, ttW

- → fake ratio / isolation extrapolation
 → use Z`s for charge
- → estimate from MC

Same-Sign Di-Lepton Search: Search Regions

SUSY-PAS-11-010

Search for new physics in three complementary samples

□ High-p_T leptons: search for high lepton p_T

 \Box Inclusive leptons: extend search to low lepton $p_T \rightarrow$ compensate trigger rate by increasing H_T cut

□ Tau – hadrons: improve sensitivity to 3rd generation

Define pre-selection regions in E^T_{miss}- H_T plane (veto shaded regions)

□ Validate data-driven background estimates with ~10-100 events

 \Box Define search regions by adding $E_{\text{miss.}}^{T} H_{T}$ requirements ->Data Driven techniques

Same-Sign Di-Lepton Searc

Search regions: good agreement betv background.

Same-Sign Di-Lepton Search: Results for 2011

SUSY-PAS-11-010

Inclusive & Tau-dilepton selections

High-p_T selections

Predictions for events with one and two fakes, contributions from simulated backgrounds, and those from events with a lepton charge misreconstruction are shown separately.

SS - Di-Lepton Search: Interpretation of Results 2011

SUSY-PAS-11-010

Exclusion region in the CMSSM corresponding to the observed upper limit events

Inclusive di-lepton selections

Altan CAKIR | Searches Supersymmetry with the CMS Experiment | December 2011 | Page 22

High-p_⊤ selections

60

dilepton mass (GeV)

= 7 TeV, /Ldt = 0.98 fb⁻¹ ents with ee/μμ/eμ Opposite-Sign D^a-Lepton Search: Results for 2011

DÈŚY

Opposite-Sign Di-Lepton Search: Search

		high E ⁿ	niss signal region	high H- signal	CMS
	-1				
	observed yield		8	4	
	MC prediction		7.3 ± 2.2	7.1 ± 2.2	
ABCD' prediction $4.0 \pm$		4.0 ± 1.0	(stat) \pm 0.8 (syst)	$4.5\pm1.6~(\mathrm{stat})\pm0.9~(\mathrm{syst})$	
high E ^{miss} signal region		high H_T signal region ⁵ (syst)			
8			4		
7.3 ± 2.2		7.1 ± 2.2			
$4.0\pm1.0~{ m (stat)}\pm0.8~{ m (syst)}$		4.5 ± 1.6 (stat) \pm 0.9 (syst)			
$14.3\pm6.3~\mathrm{(stat)}\pm5.3~\mathrm{(syst)}$		10.1 ± 4.2 (st			
4.2 ± 1.3			5.1	GeV	
10			5	GeV	

Estimate background in signal regions with two data-driven techniques:

□ Factorization (ABCD) method using 2 weakly correlated variables: $y = E^{T}_{miss} / \sqrt{(H_{T})}$

- $p_T(II)$: use $p_T(II)$ to model $p_T(vv) \sim E_{miss}^T$
- N_{bckg}: error-weighted average of 2 predictions Observed yields consistent with MC, data-driven background estimates → no evidence for SUSY
- Extract 95% CL upper limits on non-SUSY yields

2000 eV]

OS - Di-Lepton Search: Interpretation of Results 2011

SUSY-PAS-11-011

Invariant mass spectrum assuming tri-angular shaped signal

Jets+Lepton(s): Multi-Lepton Search (2011, L = 2.1 fb⁻¹)

Candidate events in this search must have at least three leptons, of which at least one must be an electron or a muon.

- for single lepton triggers: a leading muon (electron) with pT > 20(70) GeV;
- for same-flavor dilepton triggers: a leading muon (electron) with pT > 15(20) GeV and a next to leading muon(electron) with pT > 10(10)GeV;
- For different-flavor dilepton triggers: a leading muon (electron) with pT > 20 GeV

and a leading electron (muon) with pT > 10 GeV.

Multi-Lepton Search: Control Plots

Multi-Lepton Search: Results

---- Bkg Uncertainties

10³

Rka Uncortaintion

10

<u>175200 HT<200 H</u> MET>50 MET>50 MET<50 MET<50 MET>50 MET>50 MET>50 MET>50 MET>50 MET<50 MET<50 MET<50 MET<50 MET<50

DY1

DY1

Interpretation of the Physics Results for Summer 2011

Observed exclusion limits from several 2011 CMS SUSY searches plotted in the CMSSM $(m_0, m_{1/2})$ plane

• SUSY Phase Space

| December 2011 | Page 30

BSM Problems for the LHC Era

- Search in all the Right Places
- Present search results so that useful limits can be extracted
- □ If new physics is seen, characterize it as much as possible, describe **observed properties** of New Physics with minimal reliance on **untested assumptions**.

Efficiency for multi-jet+MET search cuts decreases for small mass difference \Rightarrow weaker cross-section limits Approximately independent of m_{LSP} , except at low masses.

Simplified Models (OSETs)

In mSUGRA, ratio of gluino and LSP masses is approximately fixed (~7 to 1), so mSUGRA only explores a line on this plane.

Simplified Models (OSETs)

In mSUGRA, ratio of gluino and LSP masses is approximately fixed (~7 to 1), so mSUGRA only explores a line on this plane.

Simplified Models (OSETs)

Different models (e.g. spins, squark mass) imply different mass–($\sigma x Br$) relations.

Blue curves: exclusions on models, i.e. contours where **expected** cross-section equals maximum allowed cross-section (region below curves provides approximate exclusion).

Organizing Process Sets

Examples

Interpretation of the Physics Results for OSETs

For limits on $m(\tilde{g}), m(\tilde{q}) > m(\tilde{g})$ (and vice versa). $\sigma^{\text{prod}} = \sigma^{\text{NLO-QCD}}$. $m(\tilde{\chi}^{\pm}), m(\tilde{\chi}_2^0) \equiv \frac{m(\tilde{g}) + m(\tilde{\chi}^0)}{2}$.

 $m(\tilde{\chi}^0)$ is varied from 0 ${\rm GeV}/c^2$ (dark blue) to $m(\tilde{g}){-}200~{\rm GeV}/c^2$ (light blue).

CMS Preliminary

For limits on $m(\tilde{g}), m(\tilde{q}) > >m(\tilde{g})$ (and vice versa). $\sigma^{\text{prod}} = \sigma^{\text{NLO-QCD}}$. $m(\tilde{\chi}^{\pm}), m(\tilde{\chi}_2^0) \equiv \frac{m(\tilde{g}) + m(\tilde{\chi}^0)}{2}$.

 $m(\tilde{\chi}^0)$ is varied from 0 ${
m GeV}/c^2$ (dark blue) to $m(\tilde{g})-200~{
m GeV}/c^2$ (light blue).

Summary

 \Box L = 1 fb⁻¹ of data analyzed (summer) by the CMS Collaboration

- □ Unfortunately, no evidence of Supersymmetry
- □ Extended previously explored range of model parameters
- □ Results are presented in the cMSSM scenario just for reference with previous limits.

Road-map for SUSY discoveries

- Many final states, many different analyses, complementarity between analyses, cross-checks
- Data-Driven estimation methods and multiple techniques for different analyses and for different backgrounds
- □ Aim is to set up robust analyses for discoveries and define larger limits

Prospects for 2011: analyzed L= \sim 5 fb⁻¹ data. Results coming soon!

BACKUP SLIDES

CMSSM

- SUSY related fermion and bosons
- Minimal Field Content:

Chiral superfields, Gauge (vector) superfields, Higgs superfields

Gauge interactions as SM plus SUSY "equivalents" Superpotential: $\frac{\tan\beta}{\langle H_1^0 \rangle}$

Superpotential:

 $W_{MSSM} = U^{c}Y_{u}QH_{2} - D^{c}Y_{d}QH_{1} - E^{c}Y_{e}LH_{1} + \mu H_{1}H_{2}$

The Soft SUSY breaking Lagrangian

$$\begin{split} \mathbf{L}_{soft} &= \frac{1}{2} \Big(\mathbf{M}_1 \widetilde{\mathbf{B}} \widetilde{\mathbf{B}} \ + \ \mathbf{M}_2 \widetilde{\mathbf{W}} \widetilde{\mathbf{W}} \ + \ \mathbf{M}_3 \widetilde{\mathbf{g}} \widetilde{\mathbf{g}} \Big) \ + \ h.c. \\ &+ \ m_{\widetilde{\mathbf{Q}}}^2 \widetilde{\mathbf{Q}}^* \widetilde{\mathbf{Q}} \ + \ m_{\widetilde{\mathbf{U}}^c}^2 \widetilde{\mathbf{U}}^{c*} \widetilde{\mathbf{U}}^c \ + \ m_{\widetilde{\mathbf{D}}^c}^2 \widetilde{\mathbf{D}}^{c*} \widetilde{\mathbf{D}}^c \ + \ m_{\widetilde{\mathbf{L}}}^2 \widetilde{\mathbf{L}}^* \widetilde{\mathbf{L}} \ + \ m_{\widetilde{\mathbf{E}}^c}^2 \widetilde{\mathbf{E}}^{c*} \widetilde{\mathbf{E}}^c \ + \ h \\ &+ \ m_{H_1}^2 \mathbf{H}_1^* \mathbf{H}_1 \ + \ m_{H_2} \mathbf{H}_2^* \mathbf{H}_2 \ + \ h.c. \\ &+ \ \widetilde{\mathbf{U}}^c \mathbf{a}_u \widetilde{\mathbf{Q}} \mathbf{H}_2 \ - \ \widetilde{\mathbf{D}}^c \mathbf{a}_d \widetilde{\mathbf{Q}} \mathbf{H}_1 \ - \ \widetilde{\mathbf{E}}^c \mathbf{a}_e \widetilde{\mathbf{Q}} \mathbf{H}_1 \ + \ h.c. \\ &+ \ b \ \mathbf{H}_1 \mathbf{H}_2 \ + \ h.c. \end{split}$$

Soft SUSY Breaking parameters can be simplified at the GUT scale: The CMSSM

Gluino

m₁m,

8 10 12 14 16 log₁₀ Q

Wino

Bino 100

 $\sqrt{(\mu_0^2 + m_0^2)}$

m1/2

mass [GeV] 600

500

400

300

200

0

$$M_{3} = M_{2} = M_{1} = m_{1/2}$$

$$m_{\tilde{Q}}^{2} = m_{\tilde{U}^{c}}^{2} = m_{\tilde{D}^{c}}^{2} = m_{\tilde{L}}^{2} = m_{\tilde{E}^{c}}^{2} = m_{0}^{2}$$

$$a_{u} = A_{0} Y_{u} \quad a_{d} = A_{0} Y_{d} \quad a_{e} = A_{0} Y$$

$$b = B_{0} \mu$$

Gravity Mediated SUSY Breaking: Flavour blind interactions communicate SUSY breaking to MSSM e.g. gravity

> $m_0 m_{1/2} A_0 sign()$ tan

The kinematic variable α_T

Event Selections:

- \Box Events with two or more high-p_T jets, reconstructed using the anti-k_T algorithm (ΔR =0.5)
- \Box Jets are required to have E_T > 50 GeV, $|\eta| < 3$
- □ The pseudo-rapidity of the jet with the highest E_T (leading jet) is required to be within $|\eta| < 2.5$, and the transverse energy of each of the two leading jets must exceed 100 GeV.
- □ Events in which an isolated lepton (electron or muon) with $p_T > 10$ GeV is identified are rejected to suppress events with genuine missing energy from neutrinos.
- □ To select a pure multi-jet topology, events are vetoed in which an isolated photon with pT > 25 GeV is found.

The kinematic variable α_T : Estimation of Background from tt and W + Jets Events using a Muon Control Sample

- An estimate of the backgrounds from unidentified leptons and hadronic tau decays originating from high-p_T W bosons is obtained through the use of a muon control sample.
- In this sample, it is explicitly selected W's decaying to a muon and a neutrino in the phase-space of the signal. This is performed in the same HT bins as for the hadronic signal selection.
 - One isolated muon with $p_{\rm T} > 10$ GeV and $|\eta| < 2.5$.
 - $M_T > 30$ GeV, where M_T is the transverse mass of the W candidate.
 - $\Delta R(\text{jet,muon}) > 0.5$
 - $H_T/H_T > 0.4$
 - No second isolated muon in the event. This reduces $Z \rightarrow \mu\mu$.
- The number of events from W+jet events in the hadronic selection W^{had/data} can be estimated from data the event yield, W^µ_{data}, of these type of events. The value of this ratio is extracted from the MC simulation.

H _T Bin (GeV)	275–325	325–375	375–475	475–575
MC W + tt	$463.0\pm16.0_{stat}$	$171.2\pm9.5_{stat}$	$116.3\pm8.3_{stat}$	$43.7\pm5.1_{stat}$
MC μ + jets	$407.5 \pm 14.5_{\rm stat}$	$179.1\pm9.6_{\rm stat}$	$131.6 \pm 8.8_{stat}$	$48.7\pm5.5_{stat}$
MC Ratio	1.14	0.96	0.90	0.90
Data μ + jets	389	156	113	39
W + tī Prediction	$442.0 \pm 22.4_{stat} \pm 132.6_{syst}$	$149.1\pm11.9_{stat}\pm44.7_{syst}$	$101.9\pm9.6_{stat}\pm30.6_{syst}$	$35.2\pm5.6_{stat}\pm10.6_{syst}$
$H_{\rm T}$ Bin (GeV)	575–675	675–775	775–875	875–∞
MC W + tt	$17.5 \pm 3.2_{stat}$	$5.1 \pm 1.8_{stat}$	$1.1\pm0.7_{\rm stat}$	$1.8 \pm 1.0_{\mathrm{stat}}$
MC μ + jets	$13.3 \pm 2.9_{stat}$	$8.0\pm2.3_{stat}$	$3.2\pm1.4_{stat}$	$0.9\pm0.7_{\mathrm{stat}}$
MC Ratio	0.90	0.90	0.90	0.90
Data μ + jets	17	5	0	0
W + tt Prediction	$15.3 \pm 3.7_{\mathrm{stat}} \pm 4.6_{\mathrm{syst}}$	$4.5 \pm 2.0_{\mathrm{stat}} \pm 1.4_{\mathrm{syst}}$	$0.0 \pm 1.0_{\mathrm{stat}}$	$0.0 \pm 1.0_{\mathrm{stat}}$

 $W_{\rm data}^{\rm had} = W_{\rm data}^{\mu} imes rac{W_{\rm MC}^{
m had}}{W^{\mu}}$

w Physics with Leptons

 p_T

SS – Dilepton Search: Triggers

Leptonic datasets:

- ee channel: HLT_Ele17_CaloIdL_CaloIsoVL_Ele8_CaloIdL_CaloIsoVL_v* OR HLT_Ele17_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL_Ele8_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL_v* OR HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_v* OR
- $\mu\mu$ channel: HLT_DoubleMu7_v* OR HLT_Mu13_Mu8_v*
- $e\mu$ channel: HLT_Mu17_Ele8_CaloIdL_v* OR HLT_Mu8_Ele17_CaloIdL_v*

Control regions:

- μ : HLT_Mu8_Jet40_v*
- e: HLT_Ele8_CaloIdL_CaloIsoVL_Jet40_v*

SS – Dilepton Search: Fake Ratio Method

$$N_{l} = N_{pp} + N_{fp} + N_{ff} = N_{t2} + N_{t1} + N_{t0}$$

$$N_{t0} = (1-p)^{2}N_{pp} + (1-p)(1-f)N_{fp} + (1-f)^{2}N_{ff}$$

$$N_{t1} = 2p(1-p)N_{pp} + [f(1-p) + p(1-f)]N_{fp} + 2f(1-f)N_{ff}$$

$$N_{t2} = p^{2}N_{pp} + pfN_{fp} + f^{2}N_{ff}$$

These equations assume that the prompt and the fake ratios for different leptons are independent of each other. The factors p and (1-p) are weighting (or are averaged over) the distribution of prompt leptons and f and (1-f) are weighing (or are averaged over) the distributions of fake leptons.

$$N_{pp} = \frac{1}{(p-f)^2} \left[(1-f)^2 N_{t2} - f(1-f) N_{t1} + f^2 N_{t0} \right]$$

$$N_{fp} = \frac{1}{(p-f)^2} \left[-2fp N_{t0} + \left[f(1-p) + p(1-f) \right] N_{t1} - 2(1-p)(1-f) N_{t2} \right]$$

$$N_{ff} = \frac{1}{(p-f)^2} \left[p^2 N_{t0} - p(1-p) N_{t1} + (1-p)^2 N_{t2} \right]$$

OS – Dilepton Search: Triggers

- HLT_DoubleEle8_CaloIdL_TrkIdVL_HT160_v*
- HLT_DoubleEle8_CaloIdL_TrkIdVL_HT150_v*
- HLT_DoubleMu3_HT160_v*
- HLT_DoubleMu3_HT150_v*
- HLT_Mu3_Ele8_CaloIdL_TrkIdVL_HT160_v*
- HLT_Mu3_Ele8_CaloIdL_TrkIdVL_HT150_v*

