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Introduction

Investigations of mesons play the essential role in understanding the vacuum
properties of the nonperturbative QCD [1]-[3]. In particular, analysis of the variation of
the mesons parameters in hadronic medium with respect to the temperature can give
information about the QCD vacuum and transition to the quark gluon plasma (QGP)
phase. Determination of the hadronic properties of mesons in hot and dense QCD
medium has become one of the most important research subject in the last twenty
years both theoretically and experimentally. Properties of the light, heavy-light and
heavy mesons in vacuum have been investigated widely in the literature using the
nonperturbative approaches like QCD sum rules, nonrelativistic potential models,
lattice theory, heavy quark effective theory and chiral perturbation theory.

1. K. Yagi, T. Hatsuda and Y. Miake, Quark-Gluon Plasma, Cambridge University
(2005).

2. J. Letessier, J. Rafelski, Hadrons and Quark-Gluon Plasma, Cambridge
University (2002).

3. M.A. Shifman, A.I. Vainstein and V.I. Zakharov, Nucl. Phys. B147, 385 (1979).
M.A. Shifman, A.I. Vainstein and V.I. Zakharov, Nucl. Phys. B147, 448 (1979).
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Introduction

QCD sum rules which is based on the operator product expansion (OPE), QCD
Lagrangian and quark-hadron duality, is one of the most informative, applicable and
predictive models in hadron physics [4]. The thermal version of this model proposed by
Bochkarev and Shaposhnikov [5]. In expansion of these models to finite temperature
we are face to face with some difficulties [6-8]. One of the new feature is the interaction
of the current with the particles in the medium which requires the modification of the
dispersion representation. The other new feature of the thermal QCD is breakdown of
the Lorentz invariance via the choice of reference frame. Due to residual O(3)
symmetry at finite temperature, more operators with the same dimensions appear in
the OPE comparing to the QCD sum rules in vacuum. Thermal version of QCD sum
rules has been successfully used to study the thermal properties of light, heavy-light
and heavy-heavy mesons as well-established method.

4. P. Colangelo, A. Khodjamirian, In: At the Frontier of Particle Physics, vol.3, ed.
M. Shifman, World Scientific, Singapore, 1495 (2001).

5. A. I. Bochkarev and M. E. Shaposhnikov, Nucl. Phys. B268, 220 (1986).

6. E.V. Shuryak, Rev. Mod. Phys. 65, 1 (1993).

7. T. Hatsuda, Y. Koike, S.H. Lee, Nucl. Phys. B394, 221 (1993).

8. S. Mallik, Phys. Lett. B416, 373 (1998).
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We investigate the masses and leptonic decay constants of the heavy-heavy scalar,
pseudoscalar and vector mesons in the framework of finite temperature QCD sum
rules. The annihilation and scattering parts of spectral density are calculated in the
lowest order of perturbation theory. Taking into account the additional operators arising
at finite temperature, the nonperturbative corrections are also evaluated. The
investigations show that the thermal contributions are significantly important and the
obtained results at zero temperature are in good consistency with the existing
experimental data as well as predictions of the other nonperturbative models.
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To obtain the thermal QCD sum rules for physical quantities, we need to calculate the
convenient thermal correlation function in two different ways: in terms of QCD degrees
of freedom and in terms of hadronic parameters. In QCD side, the correlation function
is evaluated via OPE which helps us expand the time ordering product of currents in
terms of operators with different dimensions. We begin by considering the following two
point thermal correlation function:

Π(q,T ) = i
∫

d4xeiq.x 〈T
(
J(x)J+(0)

)
〉. (1)

In correlation function T is the time ordering product and where J(x) = q̄1(x)Γq2(x) is
the interpolating current that carries the quantum numbers of the state concerned.
Here Γ = I or iγ5 for scalar and pseudoscalar particles, respectively and Γ = γµ as for
vector particles. The thermal average of any operator, A can be expressed as:

〈A〉β = Z−1(β)Trρ(β)A =
Tr(e−βHA)
Tr(e−βH)

, (2)

where ρ(β) is density matrix for the system, H is the QCD Hamiltonian, and β = 1/T is
the inverse of the temperature T and traces are carried out over any complete set of
states.
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The thermal average of the correlation function of any two operators,A and B, with
different coordinates can similarly be written as

〈AB〉β = Z−1(β)Trρ(β)AB, (3)

For any arbitrary Schrödinger operator A, we have the Heisenberg operator AH(t)
defined as

AH (t) = eiHt Ae−iHt , (4)

It is clear now that, for a general thermal correlation function of two Heisenberg
operators AH(t) and BH(t ′), we can write

〈AH (t)BH (t ′)〉β = Z−1(β)Trρ(β)AH (t)BH (t ′)

= Z−1(β)Tre−βH AH (t)eβH e−βHBH (t ′)

= Z−1(β)TrAH (t + iβ)e−βH BH(t ′)

= Z−1(β)Tre−βH BH (t ′)AH (t + iβ)

= 〈BH (t ′)AH (t + iβ)〉β , (5)

Kubo-Martin-Schwinger relation
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The Green function for scalar fields is defined as the following form

(∂µ∂µ + m2)G(~x − ~y , t − t ′) = −δ3(x − y)δ(t − t ′). (6)

The solution of this, subject to the periodicity condition (see Eq. (5)) can be easily
determined to be

G(t − t ′, ω) =
nB(ω)

2iω
[θ(t − t ′)(eβω−iω(t−t′) + eiω(t−t′))

+ θ(t − t ′)(e−iω(t−t′) + eβω+iω(t−t′))]. (7)

where ωk = (k~2 + m2)1/2 The finite temperature Greens functions for scaler field and
free Dirac field as the following forms, respectively

G(p) =
( 1

p2 − m2 + iε
− 2iπnB(|p0|)δ(p2 − m2)

)
(8)

and

S(k) = (γµkµ + m)
( 1

k2 − m2 + iε
+ 2πin(|k0|)δ(k2 − m2)

)
, (9)
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The fundamental assumption of Wilson expansion is that the product of operators at
different points can be expanded as the sum of local operators with momentum
dependent coefficients in the form:

T (q) =
∑

Cn(q2)〈On〉, (10)

where Cn(q2) are called Wilson coefficients and On are a set of local operators. In this
expansion, the operators are ordered according to their dimension d . The lowest
dimension operator with d = 0 is the unit operator associated with the perturbative
contribution. In the vacuum sum rules low dimension operators composed of quark and
gluon fields are quark condensate 〈ψψ〉 and gluon condensate 〈Ga

µνGaµν〉. At finite
temperature Lorentz invariance is broken by the choice of a preferred frame of
reference and new operators appear in the Wilson expansion. To restore Lorentz
invariance in thermal field theory, four-vector velocity of the medium uµ is introduced.
Using four-vector velocity and quark/gluon fields, we can construct a new set of low
dimension operators 〈uΘf u〉 and 〈uΘgu〉 with dimension d = 4. So, we can write
thermal correlation function in terms of operators up to dimension four:

T (q) = C1I + C2〈ψψ〉+ C3〈Ga
µνGaµν〉+ C4〈uΘf u〉+ C5〈uΘgu〉. (11)
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In QCD side, the correlation function is calculated in deep Euclidean region,
q2 � −Λ2

QCD via OPE where the short or perturbative and long distance or
non-perturbative effects are separated, i.e.,

ΠQCD(q,T ) = Πpert(q,T ) + Πnonpert(q,T ). (12)

The time ordering product in Eq. (1) can be expressed as

〈T (J(x)J+(x ′))〉 = θ(x0 − x ′
0)〈J(x)J+(x ′)〉+ θ(x ′

0 − x0)〈J+(x ′)J(x)〉, (13)

where θ(x) is step function.
Using Kubo-Martin-Schwinger relation, 〈J(x0)J+(x ′

0)〉 = 〈J+(x ′
0)J(x0 + iβ)〉 for

thermal expectation and making Fourier and some other transformations, we get the
following expression for the thermal correlation function in momentum space:

Π(|q|,q0) =
1

2π

∫ ∞

−∞
dq′

0M(|q|,q′
0)
( 1

q0 − q′
0 + iε

− exp(−βq0)

q0 − q′
0 − iε

)
, (14)

where
M(|q|,q0) =

∫
d4xeiq·x 〈J(x)J+(0)〉. (15)

Elşen Veli et al. 2011 Ankara YEF Günleri, Ankara University



Introduction
Spectral Densities and QCD Sum Rules at Finite Temperature

Acknowledgement
References

Thanks

In the above transformations, the following standard integral representation for the θ-
step function is used:

θ(x0 − x ′
0) =

1
2iπ

∫ ∞

−∞
dk0

exp[ik0(x0 − x ′
0)]

k0 − iε
. (16)

The imaginary part of the correlation function can be simply evaluated using the
formula i

x+iε = πδ(x) + iP( 1
x ), which leads to:

Π(q,T ) =

∫ ∞

0
ds

ρ(s)
s + Q2

0
, (17)

where, ρ(s,T ) is called the spectral density at finite temperature. The thermal spectral
density at fixed | q | can be expressed as:

ρ(q,T ) =
1
π

ImΠpert(q,T ) tanh
(
βq0

2

)
. (18)

and Q2
0 = −q2

0 .
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The Lorentz invariance breaks down via the choice of reference frame at which the
matter is at rest. However, using the four velocity vector uµ of the matter, we can define
Lorentz invariant quantities such as ω = u · q and q2 = ω2 − q2. By the help of these
quantities, the thermal correlation function for heavy vector meson can be expressed in
terms of two independent tensors Pµν and Qµν at finite temperature [9], i.e.,

Πµν
(

q,T
)
= QµνΠl(q2, ω) + PµνΠt (q2, ω), (19)

where

Pµν = −gµν +
qµqν

q2
− q2

q2 ũµũν ,

Qµν =
q4

q2 ũµũν , (20)

and ũµ = uµ − ω qµ/q2.

9. S. Mallik, K. Mukherjee, Phys. Rev. D58, 096011 (1998); Phys. Rev. D61,
116007 (2000).
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Here the functions Πl and Πt are the following Lorentz invariant functions:

Πl

(
q2, ω

)
=

1

q2 uµΠµνuν , (21)

Πt

(
q2, ω

)
= −1

2

(
gµνΠµν +

q2

q2 uµΠµνuν
)
. (22)

It can be shown that in the limit |q| → 0, the Πt function can be expressed as
Πt = − 1

3 gµνΠµν and one can easily find the Πt

(
q0, |q| = 0

)
= q2

0 Πl

(
q0, |q| = 0

)

relation between two Πl and Πt functions. In real time thermal field theory, the function
Πl (q2, ω) or Πt(q2, ω) can be written in 2 × 2 matrix form and elements of this matrix
depend on only one analytic function [10]. Therefore, calculation of the 11-component
of this matrix is sufficient to determine completely the dynamics of the corresponding
two-point function.

10. R. L. Kobes, G.W. Semenoff, Nucl. Phys. 260, 714 (1985), S. Sarkar, B. K.
Patra, V. J. Menon, S. Mallik, Indian J. Phys. 76A, 385 (2002).
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The thermal correlation function of Eq. (1) can be written in momentum space as:

Πµν
(

q,T
)
= i

∫
d4k
(2π)4

Tr
[
γµS(k)γνS(k − q)

]
, (23)

where, S(k) is thermal quark propagator :

S(k) = (γµkµ + m)
( 1

k2 − m2 + iε
+ 2πin(|k0|)δ(k2 − m2)

)
, (24)

where n(x) = [exp(βx) + 1]−1 is the Fermi distribution function [11]. Now, we insert
the propagator of Eq.(9) in Eq. (8) and consider Π1(q,T ) = gµνΠµν(q,T ) function.

11. A. Das, Finite Temperature Field Theory, World Scientific (1999).
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Carrying out the integral over k0, we obtain the imaginary part of the Π1(q,T ) in the
following form:

ImΠ1(q,T ) = L(q0) + L(−q0), (25)

where

L(q0) = Nc

∫
dk
4π2

ω2
1 − k2 + k · q − ω1q0 − 2m2

ω1ω2

×
(
[(1 − n1)(1 − n2) + n1n2]δ(q0 − ω1 − ω2)− [(1 − n1)n2 + (1 − n2)n1]

× δ(q0 − ω1 + ω2)
)
,

(26)

and n1 = n(ω1), n2 = n(ω2), ω1 =
√

k2 + m2 and ω2 =
√

(k − q)2 + m2. The terms
without the Fermi distribution functions show the vacuum contributions but those
including the Fermi distribution functions depict medium contributions. The
delta-functions in the different terms of above Eq. control the regions of non-vanishing
imaginary parts of Π1(q,T ), which define the position of branch cuts [5].
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As seen the term including δ(q0 − ω1 − ω2) gives contribution when q0 = ω1 + ω2 .
Using Cauchy-Schwarz inequality, (

∑n
i=1 a2

i )(
∑n

i=1 b2
i ) ≥ (

∑n
i=1 ai bi)

2 we see that,

ω1ω2 =

√
k2 + m2

√
(k-q)2 + m2 ≥ |k||k-q|+ m2, (27)

Therefore, we obtain the first branch cut, q2 ≥ 4m2, which coincides with zero
temperature cut describing the standard threshold for particle decays. This term
survives at zero temperature and it is called the annihilation term.
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On the other hand, the term including δ(q0 − ω1 + ω2) gives contribution when
q0 = ω1 − ω2. Similarly to the above expression, we obtain,

q2
0 = 2m2 + k2 + (k-q)2 − 2ω1ω2 ≤ q2, (28)

and therefore an additional branch cut arises at finite temperature, q2 ≤ 0, which
corresponds to particle absorption from the medium. It is called scattering term and
vanishes at T = 0.
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After straightforward calculations, the annihilation and scattering parts of
ρ1

(
q2

0 ,T
)
= 1

π
ImΠ1

(
q2

0 ,T
)

tanh βq0
2 at nonzero momentum can be written as:

ρ1,a =
−3q2

8π2
(3 − v2)

[
v −

∫ v

−v
dx n+(x)

]
for 4m2 + q2 ≤ q2

0 ≤ ∞, (29)

ρ1,s =
3q2

16π2
(3 − v2)

∫ ∞

v
dx

[
n−(x) − n+(x)

]
for q2

0 ≤ q2, (30)

where v(q2
0) =

√
1 − 4m2/q2

0 , n+(x) = n
[

1
2 (q0 + |q|x)

]
and

n−(x) = n
[

1
2 (|q|x − q0)

]
.
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From the similar manner, we can calculate also the function
Π2(q,T ) = uµΠµν(q,T )uν . After some simplifications, we obtain the imaginary part of
the Π2(q,T ) in the form

ImΠ2(q,T ) = −4iNc

∫
d4k
(2π)4

(k2 − q · k − m2 + 2q0k0 − 2k2
0 )D(k)D(k − q), (31)

where D(k) = 1/(k2 − m2 + iε) + 2πin(|k0|)δ(k2 − m2). Carrying out the integral over
k0 and angles we obtain annihilation and scattering parts of ImΠ2(q,T ) as follows:

ImΠ2,a = Nc

∫ ω+

ω−

dω1

8π|q|
(4q0ω1 − q2 − 4ω2

1)F(ω1), (32)

ImΠ2,s = Nc

∫ ∞

ω+

dω1

8π|q|
(4q0ω1 − q2 − 4ω2

1)G(ω1). (33)

Here F(ω1) = 1 − n(ω1)− n(q0 − ω1) + 2n(ω1)n(q0 − ω1),
G(ω1) = 2n(ω1)n(q0 − ω1)− n(ω1)− n(q0 − ω1) and ω± = 1

2 (q0 ± |q|v).
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In rest frame, taking into account as follows,

ImΠl,a =
1

|~q|2 ImΠ2,a, ImΠl,s =
1

|~q|2 ImΠ2,s , (34)

ρt,a =
−1
2

(ρ1,a + q2ρl,a), ρt,s =
−1
2

(ρ1,s + q2ρl,s), (35)

the annihilation and scattering parts of ρt at nonzero momentum is obtained as:

ρt,a =
3q2

32π2

∫ v

−v
dx(2 − v2 + x2)[1 − 2n+(x)], (36)

ρt,s = − 3q2

32π2

∫ ∞

v
dx(2 − v2 + x2)[n−(x) − n+(x)]. (37)

Elşen Veli et al. 2011 Ankara YEF Günleri, Ankara University



Introduction
Spectral Densities and QCD Sum Rules at Finite Temperature

Acknowledgement
References

Thanks

The annihilation part of ρl , i.e., ρl,a and its scattering part ρl,s also at nonzero
momentum can be found from Eqs. (28) and (29) replacing the coefficient
(2 − ν2 + x2) by 2(1 − x2).
In our calculations, we also take into account the perturbative two-loop order αs
correction to the spectral density. This correction at zero temperature can be written as
[1,3]:

ραs (s) = αs
s

6π2
ν(s)

(
3 − ν2(s)

)[ π

2ν(s)
− 1

4

(
3 + ν(s)

)(π
2
− 3

4π

)]
, (38)

where, we replace the strong coupling αs in Eq. (38) with its temperature dependent

lattice improved expression α(T ) = 2.095(82) g2(T )
4π [16,22]and

g−2(T ) =
11

8π2
ln
(2πT
ΛMS

)
+

51
88π2

ln
[
2 ln

(2πT
ΛMS

)]
. (39)

where ΛMS = Tc/1.14(4) and Tc = 0.160GeV .
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Similarly, the annihilation and scattering parts of spectral density for pseudo(scalar)
particles is found as:

ρa,pert(s,T ) = ρ0(s)
[
1 − n

(√
s

2

(
1 +

m2
1 − m2

2
s

))
− n

(√
s

2

(
1 −

m2
1 − m2

2
s

))]
, (40)

for (m1 + m2)
2 ≤ s ≤ ∞,

ρs,pert (s,T ) = ρ0(s)
[
n
(√

s
2

(
1 +

m2
1 − m2

2
s

))
− n

(
−

√
s

2

(
1 −

m2
1 − m2

2
s

))]
, (41)

for 0 ≤ s ≤ (m1 − m2)
2, with m1 ≥ m2. Here, ρ0(s) is the spectral density in the

lowest order of perturbation theory at zero temperature and it is given by

ρ0(s) =
3

8π2s
q2(s)vn(s), (42)

where q(s) = s − (m1 − m2)
2 and v(s) =

(
1 − 4m1m2/q(s)

)1/2
. Here n = 3 and

n = 1 for scalar and pseudoscalar particles, respectively. As it is seen, at T → 0 limit
these expressions are in good consistency with the vacuum expressions.
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As an example, we present the dependence of the annihilation and scattering parts of
the spectral density for K± and D± particles in Figs. 1 and 2. In numerical analysis,
we use the values ms = 0,13 GeV and mc = 1,46 GeV for the quark masses. As it is
clear, in the region of the standard threshold for particle decays, the ρ0(s) is replaced
by the annihilation term. In the case of light mesons, the values of ρa,pert(s,T )
considerably differ from those of the ρ0(s). However, in the case of heavy mesons, the
ρa,pert(s,T ) and ρ0(s) values are very close to each other. From Fig. 1, we also see
that the in light K± cases, the medium contributions play important role and consist
higher percentage of the total value.
Our concluding result is that the thermal contributions contribute significantly to the
spectral function.
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Figure: 1. The dependence of the spectral density of K ± meson at temperature T = 120 MeV on
the

√

s parameter.
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Figure: 1. The dependence of the spectral density of D± meson at temperature T = 120 MeV on
the

√

s parameter.
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Figure: 1. Quark propagator.

Now, we proceed to calculate the nonperturbative part in QCD side. For this aim, we
use the nonperturbative part of the quark propagator in an external gluon field, Aa

µ(x)
in the Fock-Schwinger gauge, xµAa

µ(x) = 0. Taking into account one and two gluon
lines attached to the quark line, the massive quark propagator can be written in
momentum space as [3]:

Saa′nonpert(k) = − i
4

g(tc)aa′Gc
κλ(0)

1
(k2 − m2)2

[
σκλ(6k + m) + (6k + m)σκλ

]

− i
4

g2(tc td )aa′Gc
αβ(0)G

d
µν(0)

6k + m
(k2 − m2)5

× (fαβµν + fαµβν + fαµνβ)(6k + m),

(43)
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where,

fαβµν = γα(6k + m)γβ(6k + m)γµ(6k + m)γν . (44)

We also need to know the expectation value 〈TrGαβGµν〉. The Lorentz covariance at
finite temperature permits us to write the general structure of this expectation value in
the following manner:

〈Tr cGαβGµν〉 =
1
24

(gαµgβν − gανgβµ)〈Ga
λσGaλσ〉

+
1
6

[
gαµgβν − gανgβµ − 2(uαuµgβν − uαuνgβµ

− uβuµgαν + uβuνgαµ)
]
〈uλΘg

λσuσ〉,

(45)

where, uµ is the four-velocity of the heat bath and it is introduced to restore Lorentz
invariance formally in the thermal field theory. In the rest frame of the medium
uµ = (1,0, 0,0) and u2 = 1 and Θ

g
λσ is the traceless gluonic part of the enrgy -

momentum tensor of the QCD.
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Up to terms required for our calculations, the non perturbative part of massive quark
propagator at finite temperature is obtained as:

Saa′nonpert(k) = − i
4

g(tc)aa′Gc
κλ

1
(k2 − m2)2

[
σκλ(6k + m) + (6k + m)σκλ

]

+
i g2 δaa′

9 (k2 − m2)4

{3m(k2 + m 6k)
4

〈Gc
αβGcαβ〉+

[
m
(

k2 − 4(k · u)2
)

+
(

m2 − 4(k · u)2
)
6k + 4(k · u)(k2 − m2) 6u

]
〈uαΘg

αβuβ〉
}
. (46)

Elşen Veli et al. 2011 Ankara YEF Günleri, Ankara University



Introduction
Spectral Densities and QCD Sum Rules at Finite Temperature

Acknowledgement
References

Thanks

Using the above expression and after straightforward but lengthy calculations, the
nonperturbative part in QCD side is obtained as:

Πnonpert
t =

∫ 1

0
dx

{
− 〈αsG2〉

72π
[
m2 + q2(−1 + x)x

]4

[
6q6(−1 + x)4x4 + 6m2q4x2

× (−1 + x)2(1 − 6x + 6x2)m6(5 − 32x + 42x2 − 20x3 + 10x4)

+ m4q2x
(
− 14 + 95x − 140x2 + 653 + 6x4 − 2x5

)]

−
αs〈uαΘg

αβuβ〉

54π
[
m2 + q2(−1 + x)x

]4

[
x(−1 + x)

(
4q4x2(1 − 3x + 2x2)2

+ m4(12 − 35x + 21x2 + 28x3 − 14x4)

+ m2q2x(−13 + 55x − 82x2

+ 36x3 + 6x4 − 2x5)
)(

q2 − 4(q · u)2
)]}

, (47)

where, 〈G2〉 = 〈Gc
αβGcαβ〉.
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In order to obtain QCD sum rules, we apply Borel transformation with respect to the
Q2

0 = −q2
0 is applied to both sides of the sum rules for physical quantities.

To calculate the phenomenological part, we insert a complete set of intermediate
states owing the same quantum numbers with current J between the currents in Eq.
(1) and perform the integral over. As a result, at T = 0, we obtain

Π(q, 0) =
〈0 | J(0) | P〉〈P | J(0) | 0〉

m2
P − q2

+ · · · , (48)

where · · · represents the contributions of the higher and continuum states , P indicates
pseudo (scalar) and vector mesons and mP is mass of considering particle. The decay
constants pseudo(scalar) and vector meson are defined by the matrix element of the
pseudo(scalar) and vector current J(0) between the vacuum and hadronic states:

〈0|J(0)|P〉 = AfP mP (49)

where A = 1 for pseudo(scalar) particles, respectively and A = ελµ as for vector
particles. Here ελµ is polarization states of vector mesons. Note that Eqs. (3) and (4)
are valid also at finite temperature, hence, the final representation for the physical side
can be written in terms of the temperature dependent mass and decay constant as:

Π(q,T ) =
f 2
P(T )m2

P (T )

m2
P(T )− q2

+ · · · (50)
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In order to obtain thermal sum rules, now we equate the spectral representation and
results of operator product expansion for amplitudes Πl(q2, ω) or Πt(q2, ω) at
sufficiently high Q2

0 . When performing numerical results, we should exchange our
reference to one at which the particle is at rest, i.e., we shall set |q| → 0. In this limit
since the functions Πl and Πt are related to each other, it is enough to use one of them
to acquire thermal sum rules. Here, we use the function Πt . Equating the OPE and
hadronic representations of the correlation function and applying quark-hadron duality,
our sum-rule takes the form:

f 2
V Q4

0

(m2
V + Q2

0) m2
V

= Q4
0

∫ s0

4m2

[ρt,a(s) + ραs (s)]
s2(s + Q2

0)
ds +

∫ |q|2

0

ρt,s

s + Q2
0

ds +Πnonpert
t , (51)

where, for simplicity, the total decay width of meson has been neglected. In derivation
of Eq.(??) we have also used summation over polarization states,∑
λ ε

(λ)∗

µ ε
(λ)
ν = −(gµν − qµqν/m2

V ). The Borel transformation removes subtraction
terms in the dispersion relation and also exponentially suppresses the contributions
coming from the excited resonances and continuum states heavier than considered
vector ground states.
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Applying Borel transformation with respect to Q2
0 to both sides of Eq.(51), we obtain

f 2
V m2

V exp
(
−

m2
V

M2

)
=

∫ s0

4m2
ds [ρt,a(s) + ραs (s)]e

− s
M2

+

∫ |q|2

0
ds ρt,s(s)e

− s
M2 + B̂Πnonpert

t .

(52)

As we also previously mentioned, when doing numerical analysis, we will set |q| → 0
representing the rest frame of the particle. In this case, the scattering cut shrinks to a
point and the spectral density becomes a singular function. Hence, the second term in
the right side of Eq.(52) must be detailed analyzed. Detailed analysis shows that

lim
|q|→0

∫ |q|2

0
dsρt,s(s)exp

(
− s

M2

)
= 0. (53)
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In Eq.(52), B̂Πnonpert
t shows the nonperturbative part of QCD side in Borel transformed

scheme, which is given by:

B̂Πnonpert
t =

∫ 1

0
dx

1
144 π M6 x4 (−1 + x)4

exp
[ m2

M2 x (−1 + x)

]{
〈αsG2〉

×
[
12 M6 x4 (−1 + x)4 − m6 (1 − 2x)2(−1 − x + x2)− 12 m2 M4 x2 (−1 + x)2

× (1 − 3x + 3x2) + m4 M2 x (−2 + 19x − 32x2 + 11x3 + 6x4 − 2x5)
]
+ 4 αs〈Θg〉

×
[
− 8 M6 x3 (1 − 2x)2(−1 + x)3 + m6 (1 − 2x)2(−1 − x + x2) − 2 m2 M4 x2

× (−1 + x)2(−1 − 6x + 8x2 − 4x3 + 2x4) + m4 M2 x (−2 + 3x − 12x2

+ 31x3 − 30x4 + 10x5)
]}
, (54)

where, Θg = Θ
g
00.
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In this section, we discuss the temperature dependence of the masses and leptonic
decay constants of the J/ψ and Υ vector mesons. Taking into account the above Eqs.
and applying derivative with respect to 1/M2 to both sides of the Eq.(52) and dividing
by themselves, we obtain

m2
V (T ) =

∫ s0(T )

4m2 ds s [ρt,a(s) + ραs (s)] exp
(
− s

M2

)
+ Πnonpert

1 (M2,T )

∫ s0(T )

4m2 ds[ρt,a(s) + ραs (s)] exp
(
− s

M2

)
+ B̂Π

nonpert
t

, (55)

and

f 2
V (T ) =

1
m2

V (T )

(∫ s0

4m2
ds [ρt,a(s) + ραs (s)]e

− s
M2 + B̂Π

nonpert
t

)
exp

(m2
V

M2

)
.

(56)

where

Π
nonpert
1 (M2,T ) = M4 d

dM2
B̂Π

nonpert
t , (57)

and

ρt,a(s) =
1

8π2
sν(s)(3 − ν2(s))

[
1 − 2n

(√
s

2

)]
. (58)

Elşen Veli et al. 2011 Ankara YEF Günleri, Ankara University



Introduction
Spectral Densities and QCD Sum Rules at Finite Temperature

Acknowledgement
References

Thanks

The hadronic spectral density is expressed by the ground state pseudoscalar meson
pole plus the contribution of the higher states and continuum:

ρhad (s) =
f 2
Bc
(T )m4

Bc
(T )

(mb + mc)2
δ(s − m2

Bc
)

+ θ(s − s0)ρ
pert(s) (59)

Matching the phenomenological and QCD sides of the correlation function, sum rules
for the mass and decay constant of pseudoscalar meson are obtained. Performing
Borel transformation over the Q2

0 = −q2
o after lengthy calculations, we obtain the

following sum rule for Bc mesons:

f 2
Bc
(T ) m4

Bc
(T ) exp

(
−

m2
Bc

M2

)
= (mb + mc)

2

×
{∫ s0(T )

(mb+mc )2
ds (ρa,pert(s) + ραs (s)) exp

(
− s

M2

)

+

∫ (mb−mc)
2

0
ds ρs,pert (s) exp

(
− s

M2

)

+ B̂Πnonpert
}
, (60)
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where M2 is the Borel mass parameter and B̂Πnonpert shows the nonperturbative part
of QCD side in Borel transformed scheme:

B̂Πnonpert =

∫ 1

0
dx

1
96 π M6 x4 (−1 + x)4

× exp
[m2

cx − m2
b(−1 + x)

M2x(−1 + x)

]{
〈αsG2〉

[
− m6

b(−1 + x)6

+m5
bmc(−1 + x)4 x(−1 + 2x) + x4

(
− 12 m2

c M4

×(−1 + x)3 + 12 M6 (−1 + x)4 + 2 m4
c M2 x (−1 + x)

−m6
cx2

)
+ m4

bx(−1 + x)3
(

2M2(−1 + x)2 + m2
c

×(1 − 3x + x2)
)
+ m2

bx2(−1 + x)
(

12M4x(−1 + x)3

+m4
cx(−1 + x + x2) + 3m2

cM2(1 − 3x + 4x2 − 2x3)
)

+m3
bmcx(−1 + x)2

(
− m2

cx(1 − 2x)2 + M2(2 − 9x

+6x2 + x3)
)
− mbmc(−1 + x)x2

(
m4

cx2(1 − 2x)

−m2
cM2x(6 − 9x + x2) + 6M4(1 + x − 4x2 + 2x3)

)]
(61)
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+3 αs〈Θg〉
[
m6

b(−1 + x)6 − m5
bmcx(−1 + x)4(−1 + 2x)

+mb mcx3(−1 + x)
(

m4
c x(1 − 2x) + 4 M4 (−1 + x)2

×(2 − x + x2) + m2
c M2 (−4 + 3x + 5x2 − 4x3)

)

−m4
bx(−1 + x)3

(
m2

c(1 − 3x + x2) + 2M2(1 − 2x + x3)
)

−m2
bx2(−1 + x)

(
m4

cx(−1 + x + x2) + m2
cM2

×(5 − 17x + 24x2 − 12x3) + M4(−1 + x)2(−1 + 15x

−7x2 + 2x3)
)
+ x3

(
m6

c x3 + M6(−1 + x)3(9 − 11x

+11x2) + 2m4
c M2x(−1 + 4x − 4x2 + x3)− m2

c M4

×(−1 + x)2(−9 + 7x + x2 + 2x3)
)
+ m3

bmcx2(−1 + x)2

×
(

m2
c(1 − 2x)2 + M2(1 + 6x − 11x2 + 4x3)

)]}
. (62)
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We use the gluonic part of the energy density both obtained from lattice QCD and
chiral perturbation theory. In the rest frame of the heat bath, the total energy density
obtained using lattice QCD is well fitted by the help of the following parametrization:

〈Θ〉 = 2〈Θg〉 = 6 × 10−6exp[80(T − 0.1)](GeV 4), (63)

where temperature T is measured in units of GeV and this parametrization is valid only
in the region 0.1 GeV ≤ T ≤ 0.17 GeV . Here, we should stress that the total energy
density has been calculated for T ≥ 0 in chiral perturbation theory, while this quantity
has only been obtained for T ≥ 100 MeV in lattice QCD.
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In low temperature chiral perturbation limit, the thermal average of the energy density
is expressed as :

〈Θ〉 = 〈Θµµ〉+ 3 p, (64)

where 〈Θµµ〉 is trace of the total energy momentum tensor and p is pressure. These
quantities are given by:

〈Θµµ〉 =
π2

270
T 8

F4
π

ln
(Λp

T

)
,

p = 3T
(mπ T

2 π

) 3
2
(

1 +
15 T
8 mπ

+
105 T 2

128 m2
π

)
exp

(
− mπ

T

)
,

(65)

where Λp = 0.275 GeV , Fπ = 0.093 GeV and mπ = 0.14 GeV .
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We use the temperature dependent continuum threshold s0(T ) and gluon
condensate〈G2〉 in the following form :

s0(T ) = s0

[
1 −

( T
T∗

c

)8
]
+ 4 m2

Q

(
T
T∗

c

)8
, (66)

where T∗
c = 1.1 × Tc = 0.176 GeV .

〈G2〉 = 〈0|G2|0〉
exp

[
12

(
T
Tc

− 1.05
)]

+ 1
. (67)
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In further analysis, we use the values, mc = (1.3 ± 0.05) GeV , mb = (4.7 ± 0.1) GeV
and 〈0 | 1

π
αsG2 | 0〉 = (0.012 ± 0.004) GeV 4 for quarks masses and gluon

condensate at zero temperature. The sum rules for the masses and decay constants
also include two parametres : continuum threshold s0 and Borel mass parameter M2.
The continuum threshold, s0 is not completely arbitrary and it is related to the energy of
the first exited state with the same quantum numbers as the interpolating currents. Our
numerical analysis show that in the intervals s0 = (11 − 13) GeV 2 and
s0 = (98 − 102) GeV 2, respectively for the J/ψ and Υ channels, the results weakly
depend on this parameter. The working region for the Borel mass parameter, M2 is
determined demanding that both the contributions of the higher states and continuum
are sufficiently suppressed and the contributions coming from the higher dimensional
operators are small. As a result, the working region for the Borel parameter is found to
be 8 GeV 2 ≤ M2 ≤ 25 GeV 2 and 12 GeV 2 ≤ M2 ≤ 35 GeV 2 in J/ψ and Υ channels,
respectively.
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Our final task is to discuss the temperature dependence of the leptonic decay constant
of the considered particles. For this aim, we plot these quantities in terms of
temperature in figures [2-5] using the total energy density from both chiral perturbation
theory and lattice QCD and at different values of the s0 but a fixed value of the Borel
mass parameter. As shown in this graphs, at T = 0, the values of the decay constants
of the J/ψ and Υ are obtained as fJ/ψ = (0.460 ± 0.022) GeV and
fΥ = (0.715 ± 0.032) GeV . These results are in good consistency with the existing
experimental data and predictions of the other nonperturbative models. Also, we
observe that the decay constants remain insensitive to the variation of the temperature
up to T ∼= 100 MeV , however after this point, they start to diminish increasing the
temperature.At deconfinement or critical temperature, the decay constants approach
roughly to 50% of their values at zero temperature, while the masses are decreased
about 12%, and 2.5% for J/ψ and Υ states, respectively.

Elşen Veli et al. 2011 Ankara YEF Günleri, Ankara University



Introduction
Spectral Densities and QCD Sum Rules at Finite Temperature

Acknowledgement
References

Thanks

Figure: The dependence of the mass of J/ψ meson in vacuum on the Borel parameter M 2.
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Figure: The dependence of the mass of Υ meson in vacuum on the Borel parameter M 2.
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Figure: The dependence of the leptonic decay constant of J/ψ vector meson in GeV on
temperature at M2 = 10 GeV 2.
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Figure: The dependence of the leptonic decay constant of Υ vector meson in GeV on temperature
at M2 = 20 GeV 2.
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Figure: The dependence of the mass of Bc meson in GeV on temperature at M2 = 20 GeV 2.
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Figure: The dependence of the leptonic decay constant of Bc meson in GeV on temperature at
M2 = 20 GeV 2.
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Elşen Veli et al. 2011 Ankara YEF Günleri, Ankara University



Introduction
Spectral Densities and QCD Sum Rules at Finite Temperature

Acknowledgement
References

Thanks

References

M. A. Shifman, A. I. Vainstein, V. I. Zakharov, Nucl. Phys. B147, 385 (1979); M. A.
Shifman, A. I. Vainstein, V. I. Zakharov, Nucl. Phys. B147, 448 (1979).

T. Matsui, H. Satz, Phys. Lett. B178, 416 (1986).

L. J. Reinders, H. Rubinstein and S. Yazaki, Phys. Rep. 127, No1 (1985) 1.

P. Colangelo, A. Khodjamirian, in At the Frontier of Particle Physics/Handbook of
QCD, edited by M. Shifman (World Scientific, Singapore, 2001), Vol. 3, p. 1495.

A. I. Bochkarev, M. E. Shaposhnikov, Nucl. Phys. B268, 220, (1986).

E.V. Shuryak, Rev. Mod. Phys. 65, 1 (1993).

T. Hatsuda, Y. Koike, S.H. Lee, Nucl. Phys. B394, 221 (1993).

S. Mallik, Phys. Lett. B416, 373 (1998).

S. Mallik, K. Mukherjee, Phys. Rev. D58, 096011 (1998); Phys. Rev. D61, 116007
(2000).

S. Mallik, S. Sarkar, Phys.Rev. D66, 056008 (2002).
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