

LHC in 2011 A Brief Status Overview V. Erkcan Özcan Boğaziçi University

Ankara YEF Günleri, December 29, 2011

Acknowledgement

- This review is based on inputs gathered from a large number of talks and papers, produced by LHC experiments and others presented at various conferences and workshops.
- This presentation provides a personal overview of recents results and did not request, nor obtained official endorsement from any of the LHC.

2011 End of Year Summary

- If we had looked at the events of 2011 as seen from CERN, here would be the end of year summary:
 - May AMSO2 in space.
 - June ALPHA traps antihydrogen atoms for ~1000 secs.
 - July ASACUSA measures antiproton mass with fractional precision of O(10⁻⁹)
 - August First publication from CLOUD, showing we still do not understand enough about the formation of clouds.
 - September OPERA announces superluminal neutrinos.
- What about the news from the LHC?

LHC in News

Since its start-up, LHC was all over the 0 media. Just two examples:

- One of the 20 cartoons that brought 0 Mike Keefe of Denver Post his 2011 Pulitzer Prize for editorial cartooning.
- As featured (at least) three times on 0 Zaytung news satire website...

http://www.zaytung.com/haberdetay.asp?newsid=8101

Kamuoyunun Kıyamet **Beklentilerine Cevap** Veremeyen CERN'de Olağanüstü Genel Kurul Sesleri

Kısa adıyla CERN olarak bilinen Avrupa Nükleer Arastırma Merkezi'ndeki Büyük Hadron Carpistiricisi'nda yapılan deneylerde bir türlü dünyanın sonunun getirilememesi kamuoyunun tepkisini çekerken, kurum icinde de sert tartışmaların yaşanmasına neden oluyor.

Milyonlarca Euro harcanarak yapılan deneyler sonucu ortaya çıkacak karadelik veya kuramsal bir cisimciğin dünyamızı

Avrupa Nükleer Araştırma Organizasyonu (CERN), Antin Kuntin İşlere Dünyanın Parasını Harcayacaklarına, ye Dünyada Bir Sürü Fakir İnsan Var, Onları Doyuracaklarını Acıkladı

Avrupa Nükleer Araştırma Organizasyonu (CERN), dün akşam saatlerinde Cenevre'deki merkezlerinde düzenlenen basın toplantısında, kurum bünyesinde halen sürdürülen ve maliyeti 1000 Euro'yu asan tüm calısmaları süresiz olarak askıya aldığını duyurdu. Kararın alınmasında, kamuoyunda hakim olan, "Bunun gibi antin kuntin işlere milyarlar harcayacaklarına, dünyada bir sürü aç insan var, onları doyursunlar" yönündeki genel kanaatin etkili olduğu bildirildi. devamı...

1111 TAX CODE WAS UNDERSTANDABLE Mike Keefe THE DEMIERPOST 4-11-10

CERN Deneyiyle İlgili de Söyleyecek İki Çift Lafı Olan Rasim Ozan Kütahyalı, Tam Olarak Kimi Şerefsizlikle Suçlayacağını Bulmaya Çalışıyor

Şike yasasından Avrupa Birliği'ne, Kıbrıs sorunundan ABD'deki senato seçimlerine, sualtı hokeyinden ekici tütün piyasasına kadar her konu hakkında fikir üretebilen gazetecilik mesleğinin önde gelen ismi Rasim Ozan Kütahyalı, Avrupa Nükleer Araştırmalar Merkezi (CERN) tarafından Cenevre'de yapılan deneyle ilgili olarak henüz net bir açıklama yapamamış olmanın sıkıntısını yaşıyor. Deneyle ilgili olarak "Şimdi ortada bi şerefsizlik olduğu muhakkak ama tam kim yapıyor o şerefsizliği onu daha bulamadım" diyen Kütahyalı, atomaltı parçacıklar konusunu biraz olsun çözer çözmez bu haysiyetsizlikleri yapanlardan 70 milyonun önünde hesap soracağını ifade etti.

Canlı telefon bağlantısıyla katıldığı bir televizyon programında zaman zaman öfkesine yenik düşen deneyimli gazeteci, şu zamana kadar her konu hakkında en az 5000 vuruşluk yazıları yazabildiğini ve ekranda 2 ila 4 saat arası konuşarak bağıra bağıra hesap sorabildiğini hatırlattı. En son Van depremi ardından "depreme karşı yapısal güçlendirme" ve "şike yasasının TCK'yla çelişen yönleri" hakkında iki haftada altı yazı yazdığını; bu süre zarfında üç ayrı televizyon programında "Fatih Terim'in Milan Baros tecihi" ile "Emre Belözoğlu'nun kadro dışı bırakılması" üzerine yorum yaptığını belirten Kütahyalı, CERN'deki o deneyin sorumlularından da eninde sonunda hesap soracağını, sadece birazcık zamana ihtiyacı olduğunu vurguladı.

"Elle tutulur, gözle görülür bir şey değil de ondan"

"Allaha şükür şunca zamandır hakkında konuşmayacağım hiçbir konu olmadı. On beş dakikalık bir araştırmayla, iki üç arkadaş sohbetiyle konuya vakıf olabilen bir yapım var" diyen Kütahyalı, şöyle devam etti:

"Yanlış anlaşılmasın, CERN hakkında da bilgim var. Önemli bir kurum olsa gerek. Bilimsel şeyler yapılıyor. Orası net. Fizik, kuantum, zamanın göreceliliği meseleleri ama işte çok elle tutulur bir şeyleri yok. Örneğin şike diyorsun, bir telefon kaydı çıkıyor; Avrupa Birliği diyorsun binlerce sonuç çıkıyor Google'da; kimin şerefsizlik yaptığı üç aşağı beş yukarı belli oluyor lakin CERN'de olup bitenden bir halt anlamadık. Yöneticisi kim bunların? Şenes Erzik'le bir bağları var mı? Eyyamcılık yapılıyor mu? Türkiye olarak biz ne kadar ağırlığımızı koyabiliriz bu meseleye. Bunları değerlendirebilmem için somut bir şeyler olması lâzım. Her şey muğlak..."

http://www.zaytung.com/haberdetay.asp?newsid=154355

LHC Review 2011, V.E.Özcan

CERN Accelerator Complex

"News from LHC" covers 6 detectors & a large accelerator complex.

LHC Review 2011, V.E.Özcan

LHCf

7

- Measuring differential x-sections for neutral particle production at "zero"-degrees.
- Calorimeters located 140m away on each side of ATLAS, at the P1 interaction point.
- Essential in understanding the development of the cosmic ray showers in the atmosphere.
- 2011 first paper published =>
 Photon x-sections.
 - Significant differences between data and all the available MC codes.
 - \odot π^0 x-sections in preparation.
- 2012 plans: Run for ~6 days in 2012 for measurements in Pb-p collisions.

Measurement of zero degree single photon energy spectra for $\sqrt{s} = 7$ TeV proton–proton collisions at LHC \approx

LHCf Collaboration

O. Adriani^{a,b}, L. Bonechi^a, M. Bongi^a, G. Castellini^{a,b}, R. D'Alessandro^{a,b}, A. Fausⁿ, K. Fukatsu^d, M. Haguenauer^f, Y. Itow^{d,e}, K. Kasahara^g, K. Kawade^d, D. Macina^h, T. Mase^d, K. Masuda^d, Y. Matsubara^d, H. Menjo^{a,e}, G. Mitsuka^d, Y. Muraki^d, M. Nakai^g, K. Noda^j, P. Papini^a, A.-L. Perrot^h, S. Ricciarini^{a,c}, T. Sako^{d,e,*}, Y. Shimizu^g, K. Suzuki^d, T. Suzuki^g, K. Taki^d, T. Tamuraⁱ, S. Torii^g, A. Tricomi^{j,k}, W.C. Turner¹, J. Velascoⁿ, A. Viciani^a, K. Yoshida^m

^a INFN Section of Florence, Italy ^b University of Florence, Italy

Physics Letters B 703 (2011) 128-134

LHC Review 2011, V.E.Özcan Thursday, 29 December 11

TEM used and has a rho parameter that is the ratio of the real and imaginary reev-, elastic scattering dominated by the exchange of one photon, thus called Coulomb region. ween 10-3 and 0.4 GeV2, hadronic region, single pomeron exchange. weironic and Coulomb regions, interference region. See CERN-THESIS-2011-099.

TOTEM

- Measuring p-p x-sections at the LHC, using Roman pots located ~220m away on each side of CMS, at the P5 interaction point.
 - Silicon sensors in moveable beam-pipe insertions. Can approach the beam center to a distance of ~10 times transverse beam size.
- 2011 first measurement of the total xsection published.
 - Elastic measurement down to |t|
 =2×10⁻²GeV² (√t = 4-P-transfer)
 - Sector Extrapolation using optical theorem.
 - Excellent agreement with predictions and with the inelastic x-sections measured by ATLAS & CMS.
- 2012 plans: Up-to twice closer to the beam. Improvements in beam optics could lead to measurements down to |t|~10⁻³GeV² => Can start probing ρ itself.

First measurement of the total proton-proton cross-section at the LHC energy of $\sqrt{s}=7\,\text{TeV}$

THE TOTEM COLLABORATION

G. ANTCHEV^(a), P. ASPELL⁸, I. ATANASSOV^{8(a)}, V. AVATI⁸, J. BAECHLER⁸, V. BERARDI^{5b,5a}, M. BERRETTI^{7b}, E. BOSINI^{7b}, M. BOZZO^{6b,6a}, P. BROGI^{7b}, E. BRÜCKEN^{3a,3b}, A. BUZZO^{6a}, F. S. CAFAGNA^{5a}, M. CALICCHIO^{5b,5a}, M. G. CATANESI^{5a}, C. COVAULT⁹, T. CSÖRGÖ⁴, M. DEILE⁸, K. EGGERT⁹, V. EREMIN^(b), R. FERRETTI^{6a,6b}, F. FERRO^{6a}, A. FIERGOLSKI^(c), F. GARCIA^{3a}, S. GIANI⁸, V. GRECO^{7b,8}, L. GRZANKA^{8(d)}, J. HEIRO^{3a}, T. HILDEN^{3a,3b}, M. R. INTONTI^{5a}, J. KAŠPAR^{1a,7}, J. KOPAL^{1a,8}, V. KUNDRÁ^{1a}, K. KURVINEN^{3a}, S. LAMI^{7a}, G. LATINO^{7b}, R. LAUHAKANGAS^{3a}, T. LESZKO^(c), E. LIPPMAA², M. LOKAJÍČEK^{1a}, M. LO VETERE^{6b,6a}, F. LUCAS RODRÍGUEZ⁸, M. MACRÍ^{6a}, L. MAGALETTI^{5b,5a}, A. MERCADANTE^{5b,5a}, S. MINUTOLI^{6a}, F. NEMES^{4(a)}, H. NIEWIADOMSKI⁸, E. OLIVERI^{7b}, F. OLJEMARK^{3a,3b}, R. ORAVA^{3a,3b}, M. ORUNNO^{8(f)}, K. ÖSTERBERG^{3a,3b}, P. PALAZZI^{7b}, J. PROCHÁZKA^{1a}, M. QUINTO^{5a}, E. RADERMACHER⁸, E. RADICIONI^{5a}, F. RAVOTTI⁸, E. ROBUTTI^{6a}, L. ROPELEWSKI⁸, G. RUGGIERO⁸, H. SAARIKKO^{3a,3b}, G. SANGUINETTI^{7a}, A. SANTRONI^{6b,6a}, A. SCRIBANO^{7b}, W. SNOEYS⁸, J. SZIKLAI⁴, C. TAYLOR⁹, N. TURINI⁷⁵, V. VACEK^{1b}, M. VITEK^{1b}, J. WELTI^{3a,3b} and J. WHITMORE¹⁰

^{1a} Institute of Physics of the Academy of Sciences of the Czech Republic - Praha, Czech Republic, EU

EPL, 96 (2011) 2100

$$\sigma_{T} = \left(98.3 \pm 0.2^{(\text{stat})} \pm 2.7^{(\text{syst})} \left[\begin{smallmatrix} +0.8\\ -0.2 \end{smallmatrix}\right]^{(\text{syst from }\rho)}\right) \text{ mb}$$

LHC Review 2011, V.E.Özcan

paror I

ALICE

- ø pp data (few pb⁻¹)
 - First inclusive J/ψ production cross section in pp collisions at \sqrt{s} = 2.76 TeV
 - First J/Ψ polarization measurement in pp collisions at $\sqrt{s} = 7$ TeV
 - Final inclusive D meson production cross section in pp at $\sqrt{s} = 7$ TeV
 - First Λ^+_c signal in pp at $\sqrt{s} = 7$ TeV
- Pb-Pb data in 2011 (~140ub⁻¹)
 - Twice the design luminosity
 - Significantly enhanced rare probe statistics
 - Excellent detector and trigger performances
- Goals for 2012
 - p-Pb (and Pb-p) data taking (30 nb⁻¹)
 - Preparations for 2017/18 upgrade

Measurements of charged particle spectra, baryon/meson ratios, nuclear modification factors of light and D mesons & charmonia, etc. => Behaviour of QGP at the LHC gives

important clues on QCD confinement and chiral symmetry restoration.

Some Big Questions

CMB, large-scale-structure, type-IA supernovae, etc.

- Oliverse is:
 - 23% dark matter
 - 73% dark energy
 - ~4.5% baryonic
 matter

β-decays, decays of kaons and B mesons

- Anti-matter:
 - Where is it all? Why do we have just matter everywhere?

Gravity:

- Why so weak?
- Why is it so difficult to integrate with QM?

What is the mechanism responsible for the mass of matter?

LHC Review 2011, V.E.Özcan Thursday, 29 December 11

Answers from SM => More Questions...

Within the SM itself and based on calculations on SM:

- Naturalness problem: Mass of yet-to-be-discovered Higgs boson diverges.
- CP violation in SM not enough: Why more matter than antimatter?
- Completely absent from SM:
 - No unification of the 3 forces.
 - Also where is gravity?
 - Why three families?
 - Dark energy?
 - Arbitrary "input" parameters. Why is $m_d > m_u$? Why $m_e < m_n m_p$?

Answers from SM => More Questions... What to look for?

Within the SM itself and based on calculations on SM:

- Naturalness problem: Mass of yet-to-be-discovered Higgs boson diverges. Higgs? SUSY?
- CP violation in SM not enough: Why more matter than antimatter? Does CKM triangle close? New flavor?
- Completely absent from SM:
 - No unification of the 3 forces.
 - Also where is gravity? Extra dimensions?
 - Why three families? 4th generation?
 - Dark energy? Related to Higgs vacuum???
 - Arbitrary "input" parameters. Why is $m_d > m_u$? Why $m_e < m_n m_p$?

Are these particles fundamental?

Technicolor? E6? SUSY?

Test QCD.

ATLAS and CMS

The two general-purpose detectors at the LHC. ~3000 collaborators each.

ATLAS Detector

Inner Detector:

EPJC 70 (2010) 787

3 technologies (Pixel detectors, semiconductor tracker & transition radiation tracker) 2T solenoidal magnetic field up to $|\eta|<2.5$ resolution ~ 4% for $p_T=100$ GeV

Calorimeters:

EPJC 70 (2010) 723 EPJC 70 (2010) 755 EPJC 70 (2010) 1193

Good granularity (transverse and longitudinal sampling) and coverage ($|\eta|$ <4.9) => Good angular resolution

EM : Pb/Liquid Argon (both in Barrel and Endcap)

HAD : Fe/scintillation tiles (Barrel) – Cu/Liquid Argon (EC)

Forward (EM and HAD) : Cu/W - LAr Non-compensating

25m 25m Corrid magnes Nuon chambers Semiconductor tracker

44m

c) $\sigma/E \approx 10 - 17\%/\sqrt{E} \oplus 0.7\%$ (EM) $\sigma/E \approx 50\%/\sqrt{E} \oplus 0.3\%$ (HAD) $\sigma/E \approx 100\%/\sqrt{E} \oplus 10\%$ (Forward)

Muon Spetrometer

EPJC 70 (2010) 875

4 technologies (MDTs and CSCs as precision chambers, RPCs and TGCs as trigger chambers) in a toroidal magnetic field in air => Resolution ~10% for muon $p_T = 1$ TeV (standalone measurement)

Detector Status

ATLAS overall data taking eff. : 93.5%

 Overall fraction of data used for offline analyses, better than 90%.

Inner Tracking Detectors			Calorimeters				Muon Detectors				Magnets	
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.8	99.6	99.2	97.5	99.2	99.5	99.2	99.4	98.8	99.4	99.1	99.8	99.3
Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at \sqrt{s} =7 TeV between March 13 th and October 30 th (in %), after the summer 2011 reprocessing campaign												

Average Live fraction of detector components

- CMS overall data taking eff. :
 92%
- Overall fraction of data used for offline analyses, better than 90%.

Summary: Despite their amazing complexity, excellent performance & >5fb⁻¹ of data each!

97%

Step 1: Standard Candles

- Thanks to LEP and Tevatron (and LHC measurements from 2010), precise measurements of gauge bosons and top quarks.
- Z bosons => Candle to calibrate measurements of charged leptons
- W bosons => Candle to calibrate measurements of neutrinos (missing transverse energy)
- top quarks: BR(t->Wb)≈1 => Can be used to understand b-tagging

VALUE (GeV)	EVTS	DOCUMENT ID		TECN	СОМІ	MENT						
91.1876±0.0021 OUR FI	т										W/mag	55
91.1852 ± 0.0030	4.57M	¹ ABBIENDI	01A	OPAL	Eee	= 88-94 GeV						55
91.1863 ± 0.0028	4.08M	² ABREU	00F	DLPH	Eee	VALUE (GeV)	EVTS	DOCUMENT ID		TECN	COMMENT	_
91.1898±0.0031	3.96M	³ ACCIARRI	00C	L3	Eee	80.399± 0.023 OUR F	т				_	
91.1885±0.0031	4.57M	⁴ BARATE	00C	ALEP	<u>⊢ee</u>	80.401 ± 0.043	500k	¹ ABAZOV	09AB	D0	$E_{\rm cm}^{pp} = 1.96 {\rm TeV}$	Į
7 mass	Real Provide No.	States Problem			1000	$80.336 \pm \ 0.055 \pm 0.039$	10.3k	² ABDALLAH	08A	DLPH	$E_{\rm cm}^{ee} = 161-209 {\rm GeV}$	
2 111435						$80.413 \pm 0.034 \pm 0.034$	115k	³ AALTONEN	07F	CDF	$E_{cm}^{p\overline{p}} = 1.96 \text{ TeV}$	
					Field.	$80.415 \pm 0.042 \pm 0.031$	11830	⁴ ABBIENDI	06	OPAL	$E_{cm}^{ee} = 170-209 \text{ GeV}$	
						$80.270 \pm \ 0.046 \pm 0.031$	9909	⁵ ACHARD	06	L3	$E_{cm}^{ee} = 161 - 209 \text{ GeV}$	
						$80.440 \pm 0.043 \pm 0.027$	8692	⁶ SCHAEL	06	ALEP	$E_{cm}^{ee} = 161 - 209 \text{ GeV}$	
						80.483± 0.084	49247	⁷ ABAZOV	02D	D0	$E_{cm}^{p\overline{p}} = 1.8 \text{ TeV}$	
						80.433 + 0.079	53841	⁸ AFFOLDER	01E	CDE	FPP - 18 TeV	
						15	STATISTICS STATISTICS			10000		

LHC Review 2011, V.E.Ozcan

From 2010 Z_{µµ}+MET candidate

- Invariant mass of muon pair = 94 GeV.
- Missing transverse energy = 161 GeV.

$Z_{\mu\mu}$ candidate with 20 vertices

Standard candles need to be studied consistently, as the detector/machine conditions change.

Coping up with high lumi

- In 2011 both ATLAS and CMS have 0 coped well with high pileup.
- Minor degradation in performance 0 (when it exists) is well modeled by simulation.

η coverage	2011 resolution (GeV)	2010 resolution (GeV)
$ \eta < 2.47$	1.76 ± 0.01	1.88 ± 0.08
η < 1.37	1.60 ± 0.01	1.62 ± 0.09
$2.47 < \eta < 1.37$	1.99 ± 0.02	1.99 ±0.22

Z->ee mass resolution from ATLAS

E/p stability in the CMS ECAL using W->ev events

number of SCT hits on track for two different pile-up cases from ATLAS.

Step 2: Measuring SM

- Important in understanding the level of backgrounds.
 - Most important ones: Weak boson + jets, dibosons, single and pair production of top quarks.
 - Excellent performance. For example, better than 10% uncertainty in tt x-section
- Important in understanding (the implications of) QCD: underlying event, multiple interactions, jet production, etc. Measurements of (b-)jet xsections, di-jet mass spectra, etc.

CMS PAS TOP-11-024

Double differential di-jet cross sections measured over a very large range of m12 and rapidity (y)

LHC Review 2011, V.E.Özcan

Revisiting Old Friends

- While measuring the SM particles, we also check for unexpected surprises:
 - Best measurement of the top-antitop mass difference.
 (CMS TOP-11-019).

 $\Delta m_t^{\text{measured}} = -1.20 \pm 1.21 \text{ (stat)} \pm 0.47 \text{ (syst) GeV}$

Sould the top quark be a quark with exotic charge? Q = -4/3 hypothesis excluded at more than 5\sigma.

	<q<sub>combsoft></q<sub>					
SM	-0.234 ± 0.011	<u>ATLAS-</u> <u>CONF-2011-141</u>				
Exotic	$+0.209 \pm 0.011$					
Measured	-0.31 ± 0.07					
		<q<sub>comb></q<sub>				
	SM	-0.082 ± 0.020				
	Exotic	$+0.083 \pm 0.020$				
	Measured	-0.082 ± 0.015				

LHC Review 2011, V.E.Özcan

Step 3: Look for New Stuff

21

- Outline of example analysis: search for sbottoms.
- Pair production, then each decays to a bquark and the LSP.
- Signature: 2 b-tagged jets + large missing E_T.
- Require P_T(j1)>130 GeV, ET>130 GeV, P_T(j2)>50 GeV. Veto events with additional high P_T objects.
- Construct a discriminating variable, most commonly some sort of mass variable that relates to the objects being search for.
- Obtain background estimates in data control samples. For example events with high PT leptons considered in this analysis.
- Compare background estimate with data.
- Done with 2fb⁻¹ of early 2011 data.

 $m_{CT}(v_1, v_2) = ([E_{T}(v_1) + E_{T}(v_2)]^2 - [\mathbf{p}_{T}(v_1) - \mathbf{p}_{T}(v_2)]^2)^{1/2}$

LHC Review 2011, V.E.Özcan

Supersymmetry

- Naturalness / Hierarchy problem: Radiative corrections to the Higgs mass are divergent.
 - New supersymmetric partners of known particles to cancel contributions from known particles.
 - A new fermion for each boson, a new boson for each fermion.
- Gauge coupling unification (at percent level)!
- Excellent dark matter candidate if R parity is conserved: Lightest supersymmetric particle will be stable & weakly interacting.

*Only a selection of the available results leading to mass limits shown

More exotic stuff

Grand unification, new bosons, new quarks, extra dimensions, micro-black holes, ...

		ATLAS Exotics Searches* - 95% CL Lower Limits (Status: Dec. 2011)			
	Large ED (ADD) - manaist				
	Large ED (ADD) : Hiohojet	$L=1.0 \text{ fb} \cdot (2011) \text{ [ATLAS-CONF-2011-096]} 3.2 \text{ TeV} M_D (0=2)$			
sions	Large ED (ADD) : diprotori LIED : $yy + F$	L=2.1 fb ⁻ (2011) [Preliminary] 3.0 TeV M _S (GRW Cut-OII) ATLAS Preliminary 3.0 TeV M _S (GRW Cut-OII) Preliminary			
	BS with $k/M_{\rm pl} = 0.1$; vy, ee, uu combined, m	L=1.1 fb (2011) [arXiv:1111.4116] 1.23 TeV Compact. Scale 1/R (SPS8)			
	PS with k/M = 0.1 : 77 resonance m	$L_{1.1-2.1 \text{ fb}} (2011) [Preliminary, arXiv:108.1582] = 1.95 \text{ feV} Gravitor mass Ldt = (0.03 - 2.1) \text{ fb}^{-1}$			
nen	RS with $a / a = -0.20$: $H_{T} + E_{T}$	$L=1.0 \text{ fb}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass L = 0.6 \text{ ft}^{-1}(2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} Gravitori mass } 10000000000000000000000000000000000$			
a dir	$O_{\text{qqgKK}} = \sum_{s} \sum$	L = 1.0 fb (2011) [ATLAS-CONF-2011-123] 840 GeV RK gradin mass [S = 7 IeV]			
Xtra	OBH : High-mass o	$\frac{L=36 \text{ pb}}{2010} [arXiv:1103.3864] \qquad 3.67 \text{ lev} M_D (0=0)$			
Ш	ADD BH $(M_{-1}/M_{-}=3)$ multijet $\Sigma p = N_{-}$	$L=33 \text{ pb} (2010) [ATLAS-CONF-2011-070] 2.35 \text{ TeV} M_D$			
	ADD BH $(M_{TH}, M_D=3)$ · SS dimuon N	$\frac{1}{1.37 \text{ lev}} \frac{1}{1.37 \text$			
	ADD BH $(M_{TH}, M_{D}=0)$: 00 annually, $N_{ch. part.}$	$L=1.5 \text{ ib} (2011) [a1x(0.1111.0000] 1.25 \text{ iev} W_D (0-0)$			
	gqqq contact interaction : $F_{x}(m_{\text{start}})$	$L = 16 \text{ fb}^{-1} (2010) [arXiv:1103.3864 (Bayesian limit)] 6.7 TeV Å$			
CI	gqll contact interaction : ee, $\mu\mu$ combined, m_{μ}	$L=11-1.2 \text{ fb}^{-1}(2011) \text{ [Preliminary]}$ 10.2 TeV Λ (CONStructive int.)			
	SSM : m _{colum}	L=1.1.2 (±1.7) [1.1.2 (±1.7) [1.1.2 (±1.7)] [1.1.2 (±1.7) [1.1.2 (±1.7)] [1.1.2 (±1.7) [1.1.2 (±1.7)] [1.1.2 (±1.7)] [1.1.2 (±1.7) [1.1.2 (±1.7)] [1.1.2 (\pm1.7)] [1.1.2 (\pm1			
\geq	SSM : m _{Te/u}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.1316] 2.15 TeV W' Mass			
α	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ (2011) [Preliminary] 660 GeV 1 st gen. LQ mass			
ΓC	Scalar LQ pairs (β =1) : kin. vars. in µµjj, µvjj	L=35 pb ⁻¹ (2010) [arXiv:1104.4481] 422 GeV 2 nd gen. LQ mass			
ne	4^{th} generation : coll. mass in Q $\overline{Q}_{4} \rightarrow WqWq$	L=37 pb ⁻¹ (2010) [CONF-2011-022] 270 GeV Q ₄ mass			
th g	4^{th} generation : $d_{A}\overline{d}_{A} \rightarrow WtWt$ (2-lep SS)	L=34 pb ⁻¹ (2010) [1108.0366] 290 GeV d ₄ mass			
4-	$TT_{4th \text{ gen}} \rightarrow t\overline{t} + A_0 A_0^4$: 1-lep + jets + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.4725] 420 GeV T mass $(m(A_0) < 140 \text{ GeV})$			
	Techni-hadrons : dilepton, $m_{ m ee/\mu\mu}$	<i>L</i> =1.1-1.2 fb ⁻¹ (2011) [CONF-2011-125] 470 GeV ρ_{T}/ω_{T} mass $(m(\rho_{T}/\omega_{T}) - m(\pi_{T}) = 100 \text{ GeV})$			
	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115] 780 GeV N mass $(m(W_B) = 1 \text{ TeV})$			
	Major. neutr. (LRSM, no mixing) : 2-lep + jets	<i>L</i> =34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115] 1.350 TeV W_R mass (230 < $m(N)$ < 700 GeV)			
	$H_{L}^{\pm\pm}$ (DY prod., BR($H^{\pm\pm} \rightarrow \mu\mu$)=1) : $m_{\mu\mu}$ (like-sign)	<u>L=1.6 fb⁻¹ (2011) [CONF-2011-127]</u> 375 GeV $H_L^{\pm\pm}$ mass			
ther	Excited quarks : γ -jet resonance, $m_{\gamma jet}$	L=2.1 fb ⁻¹ (2011) [Preliminary] 2.46 TeV q* mass			
Õ	Excited quarks : dijet resonance, m _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 2.99 TeV q* mass			
	Axigluons : m _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 3.32 TeV Axigluon mass			
	Color octet scalar : m _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 1.92 TeV Scalar resonance mass			
	Vector-like quark : CC, m _{lvq}	$L=1.0 \text{ fb}^{-1} (2011) \text{ [Preliminary]} \qquad 900 \text{ Gev} Q \text{ mass (coupling } \kappa_{qQ} = \nu/m_Q)$			
	vector-like quark : NC, m _{llq}	$\frac{1}{1} \frac{1}{1}			$10^{-1} \qquad 1 \qquad 10 \qquad 10^{-1}$
*On	ly a selection of the available results leading to mass limits	shown IVIASS SCAIE [IEV]			

LHC Review 2011, V.E.Özcan Thursday, 29 December 11

Step 4: Look for Something Familiar

Last piece of the SM: Higgs – need analyses in many channels as the branching ratio to various final states depends on the Higgs mass.

Hunt for the Higgs

Many channels – each with different backgrounds, different systematics, etc.

LHC Review 2011, V.E.Özcan

So have we found it yet?

- No, but both experiments see a strange excess.
- The Maximum local excess at the level of 2.6 σ and 3.6 σ for CMS and ATLAS, around 124 126 GeV.
- The correcting for LEE, significance goes down to 1.9σ and 2.3σ .
- So we are unable to say there is no Higgs.

News from LHC & ATLAS, V.E.Özcan

LHCb (LHCcharm) to Rescue?

Delivered Lumi: 1.2195 /fb

 $A_{CP}(D \to K^+ K^-) - A_{CP}(D \to \pi^+ \pi^-) = (-0.82 \pm 0.21 \pm 0.11)\%$

29

ity (1/fb) HV: 0.5 (%) 1.6 Recorded Lumi: 1.1067 /ft VELO Safety: 0.9 (%) DAQ: 4.0 (%) ime: 3.8 (% 1.2 milestone 0.8 0.6 0.4 0.2 26/04 26/05 25/06 25/07 24/08 23/09 23/10 Date

Integrated LHCb Efficiency breakdown

FULLY ON: 90.7 (%)

NEWS SCIENCE & ENVIRONMENT

LHC reveals hints of 'new physics' in

111 Last updated at 12:18 GM

for BBC News

Large Hadron Collider researchers have shown off what may be the

facility's first "new physics" outside our current understanding of

ies called D-mesons seem to decay slightly differently from the

ntiparticles, LHCb physicist Matthew Charles told the HCP 2011

B B C Moone

particle decays

By Jason Palmer

News from LHC & ATLAS, V.E.Özcan

0

3.50 effect!

Sorry, says Brod et al.

On the size of direct CP violation in singly Cabibbo-suppressed D decays

Joachim Brod,^{1,}* Alexander L. Kagan,^{1,†} and Jure Zupan^{1,‡}

¹Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

The first experimental evidence for direct CP violation in charm-quark decays has recently been presented by the LHCb collaboration in the difference between the $D \rightarrow K^+K^-$ and $D \rightarrow \pi^+\pi^$ time-integrated CP asymmetries. We estimate the size of the effects that can be expected within the Standard Model and find that at leading order in $1/m_c$ they are an order of magnitude smaller. However, tree-level annihilation type amplitudes are known to be large experimentally. This implies that certain formally $1/m_c$ suppressed penguin amplitudes could plausibly account for the LHCb measurement.

http://arxiv.org/pdf/1111.5000v2

LHC Luminosity

So we have to keep on looking... => More data!

$$\mathcal{L} \propto rac{N_1 N_2 n_b}{\sigma^2}$$

 N_i = bunch intensity n_b = number of bunches σ = colliding beam size

$$\sigma^2 = \frac{\varepsilon \cdot \beta^*}{\gamma}$$

 ϵ = normalized emittance – beam property β^* = beta star - accelerator property

Nominal values:

ε **= 3.5** μ**m**

 β^* = 0.55 m

 $N_i = 1.15 \times 10^{11}$ $n_b = 2808$

 $\gamma \sim$ 7000 for energy of 7 TeV

Luminosity throughout 2011

Learning to work at high intensity

UFOs are getting less frequent. Single event upsets being mitigated by shielding and relocation.

2012 Expectations

- Bunch spacing: Keep 50ns
 - 25ns seem would be preferred to reduce pileup.
 However limits due to the brightness from the injectors => Lower integrated luminosity.
- Predictions for total integrated lumi per experiment, running through ~April to October 2012:
 - 9 fb⁻¹, assuming performance in October 2011.

 - I6 fb⁻¹, with increased bunch intensity and smaller β* (0.7-0.8m), thanks to beam energy increased to 4GeV. Decision to be taken early in 2012.

Conclusions

- LHC ran well above expectations in 2011.
- A plethora of results:
 - No new physics beyond SM.
 - Too early to say we found Higgs either.
 - Like a bad TV series, we are left with a cliffhanger at the end of the season.
- Excellent understanding of the machine suggests that we will get up to 3 times more data in 2012, possibly at higher E_{CM}.
- Keep on watching us, as 2012 will be the year of "Higgs or no Higgs" for sure.

http://www.hurriyet.com.tr/planet/19526138.asp

Avrupa Nükleer Araştırma Merkezi (CERN) bilimadamları, atomların çekirdeğinin oluşmasına yardımcı olan yeni bir parçacık keşfettiklerini açıkladı.

Keşif, Cenevre yakınlarındaki Büyük Hadron Çarpıştırıcısı'nda (BHÇ) yürütülen ATLAS deneyinden elde edilen veriler kullanılarak yapıldı.

13 Aralık'ta Cern bilimadamları, parçacıklara kütlelerini verdiği düşünülen ve "Higgs Boson" adlı atomaltı parçacığının izini bulduklarını ancak elde edilen verilerin keşif olarak nitelenemeyeceğini açıklamıştı.

Chi_b (3P) olarak adlandırılan yeni parçacık, Higgs Boson'dan farklı olarak iki kısımdan oluşuyor. "Alt tanecik" diye bilinen temel parçacık ve bu parçacığın karşıt taneciği. Bu iki tanecik bir araya geldiğinde atom çekirdeklerini bir arada tutan gücü oluşturuyor.

Bilimadamları, yeni parçacığın atomların içindeki çekirdekleri bir arada tutan gücü anlamalarına olanak tanıyacağını bildirdi.

Parçacığın varlığını öngören bilimadamları, daha önce parçacığı gözleme şansı bulamamıştı. Chi_b (3P), BHÇ'nin bulduğu ilk parçacık oldu.

Henüz resmi olarak yayımlanmayan keşfin, bilimadamlarının elde ettikleri verileri yorumlamalarına yardımcı olarak Higgs Boson'u bulmalarını kolaylaştırması bekleniyor.

"Teselli Ikramiyesi"

LHC Review 2011, V.E.Özcan Thursday, 29 December 11