Covariant Symplectic Structure and Conserved Charges of NMG

G. Alkac, D. Olgu Devecioglu

Middle East Technical University
alkac@metu.edu.tr

December 27, 2011

Table of contents

Basics of Symplectic Geometry

Application to a Local Gravity Action

Calculation of Conserved Charges

Conclusion

Definition of Symplectic Structure

- Consider a smooth manifold Z endowed with a 2-form given as

$$
\begin{equation*}
\omega=d p_{i} \wedge d q^{i} \tag{1}
\end{equation*}
$$

where q^{i}, p_{i} are coordinates and momenta, $i=1, \ldots N$.

$$
\begin{equation*}
\omega=\frac{1}{2} \omega_{I J} d Q^{\prime} \wedge d Q^{J} \tag{2}
\end{equation*}
$$

with $I=1, \ldots, 2 N . Q^{i}=p_{i}$ for $i \leq N$ and $Q^{i}=q^{i-N}$ for $i \geq N$.
Then, $\omega_{i, i+N}=-\omega_{i+N, i}=-1$

- Poisson bracket of any two function $A(Q)$ and $B(Q)$ is given by

$$
\begin{equation*}
[A, B]=\omega^{I J} \frac{\partial A}{\partial Q^{\prime}} \frac{\partial B}{\partial Q^{J}} \tag{3}
\end{equation*}
$$

Definition of Symplectic Structure

- ω is closed $(d \omega=0)$
- nondegenerate, i.e. when ω is written as a $2 N \times 2 N$ matrix, it has an inverse.
- This closed 2-form on Z is called symplectic structure.

Symplectic Structure in Geometrical Theories

- Choosing p_{i}, q^{i} as coordinates of the phase space Z would destroy the general covariance (by the choice of time coordinate).
- One should construct the phase space Z from solutions of the equations of motion derived from an action to achieve a manifestly covariant structure.
- Since classical solutions of any physical theory is in one-to-one correspondence with the initial values of p_{i}, q^{i}, we define our phase space as the space of solutions of the classical equations. (Crnkovic,Witten-1987)

Fundamental Objects on Z - Functions

- Let g be a solution of the field equations Φ.
- The functions on Z, denoted by $g(x)$, takes a spacetime point x and maps it into a $D \times D$ real matrix $g(x)$.

Fundamental Objects on Z - Vectors

- Consider an arbitrary, small variation in the metric $\tilde{g}=g+\delta g$
- When inserted into the field equations, it yields $\tilde{\Phi}=\Phi+\delta \Phi$.
- The vectors can be defined as the variations δg which solve $\delta \Phi=0$ (preserves the field equations).

Fundamental Objects on Z - Forms

- A one-form, $\delta g(x)$, maps a vector δg to a $D \times D$ real matrix $\delta g(x)$, which is the vector evaluated at a spacetime x.
- We generalize this notion to construct p -forms as "wedge functions" of the one forms $\delta g(x)$

$$
\begin{equation*}
\Omega=\int d x_{1} \cdots d x_{p} \Theta\left(x_{1}, \cdots, x_{p}\right) \delta g\left(x_{1}\right) \wedge \cdots \wedge \delta g\left(x_{p}\right) \tag{4}
\end{equation*}
$$

where $\Theta\left(x_{1}, \cdots, x_{p}\right)$ is a zero-form on Z and \wedge is an anticommuting product.

Fundamental Objects on Z - Forms

- We can define an exterior derivative operator δ which maps p -forms to $\mathrm{p}+1$-forms as follows

$$
\begin{equation*}
\delta \Omega=\int d x_{0} d x_{1} \cdots d x_{p} \frac{\delta \Theta\left(x_{1}, \cdots, x_{p}\right)}{\delta g\left(x_{0}\right)} \delta g\left(x_{0}\right) \wedge \delta g\left(x_{1}\right) \wedge \cdots \wedge \delta g\left(x_{p}\right) \tag{5}
\end{equation*}
$$

- One can easily check this operator obeys the modified Leibniz rule and Poincaré Lemma.

Application to a Local Gravity Action

- Let us consider a generic local gravity action

$$
\begin{equation*}
S=\int d^{D} x \sqrt{|g|} \mathcal{L}\left(g, R, \nabla R, R^{2}, \cdots\right) \tag{6}
\end{equation*}
$$

whose variation is given as

$$
\begin{equation*}
\delta S=\int d^{D} x \sqrt{|g|} \Phi_{a b} \delta g^{a b}+\int d^{D} x \partial_{\mathrm{a}} \Lambda^{a}(g, \delta g, \nabla \delta g \cdots) \tag{7}
\end{equation*}
$$

where $\Phi_{a b}$ is the field equation and Λ^{a} is the boundary term.

Application to a Local Gravity Action

- We can view δS as a 1-form on Z (note that $\Lambda^{a}(x)$ includes $\delta g_{a b}$ and the relevant quantities).
- The exterior derivative of (7) will vanish by Poincaré Lemma,

$$
\begin{align*}
\delta^{2} S & =\int d^{D} x \sqrt{|g|} \delta \Phi_{a b} \wedge \delta g^{a b}-\frac{1}{2} \int d^{D} x \sqrt{|g|} \Phi_{a b} \delta g^{a b} \wedge \delta \ln |g| \\
& +\int d^{D} x \partial_{a} \delta \Lambda^{a}=0 \tag{8}
\end{align*}
$$

where $\delta \ln |g|=g^{a b} \delta g_{a b}=-g_{a b} \delta g^{a b}$.

- First two integrals vanish on shell and the third one implies

$$
\begin{equation*}
\int d^{D} x \sqrt{|g|} \nabla_{a} J^{a}=0 \tag{9}
\end{equation*}
$$

where $J^{a} \equiv-\frac{\delta \Lambda^{a}}{\sqrt{|g|}}$ is the "symplectic current".

Application to a Local Gravity Action

- From this, one can construct the following Poincaré invariant 2-form since the covariant divergence of the symplectic current vanishes $\left(\nabla_{a} J^{a}=0\right)$

$$
\begin{equation*}
\omega=\int_{\Sigma} d \Sigma_{a} \sqrt{|g|} J^{a} \tag{10}
\end{equation*}
$$

where Σ is $(D-1)$-dimensional spacelike hypersurface.

- Darboux's theorem assures us that this is the sought after symplectic structure of the theory if ω is additionally closed.

Application to a Local Gravity Action

- Finally, one must show that it is also gauge invariant in the space of classical solutions Z and in the quotient space $\bar{Z}=Z / G, G$ being group of diffeomorphisms $\left(x^{a} \rightarrow x^{a}+\xi^{a}\right)$.
- The former is trivial since all constituents of ω transform like tensors. For the latter, we should find out how ω transforms under the following transformation

$$
\begin{equation*}
\delta g_{a b} \rightarrow \delta g_{a b}+\nabla_{a} \xi_{b}+\nabla_{b} \xi_{a} \tag{11}
\end{equation*}
$$

where ξ is asymptotic to a Killing vector field at infinity. This computation will yield a boundary term which gives rise to conserved charges of the theory under consideration.

Application to a Local Gravity Action

- Let us now apply this procedure to the following quadratic action

$$
\begin{equation*}
I=\int d^{D} x \sqrt{|g|} \mathcal{L} \equiv \int d^{D} x \sqrt{|g|}\left(\frac{1}{\kappa}\left(R+2 \Lambda_{0}\right)+\alpha R^{2}+\beta R_{a b}^{2}\right) \tag{12}
\end{equation*}
$$

- One can explicitly show that covariant divergence of the symplectic current is equal to the following expression

$$
\begin{equation*}
\nabla_{a} J^{a}=\frac{1}{2} g^{a b} \delta \Phi_{a b} \wedge \delta \ln |g|+\delta \Phi_{a b} \wedge \delta g^{a b}+\delta \Phi \wedge \delta \ln |g| \tag{13}
\end{equation*}
$$

which vanishes on shell. Here $\Phi_{a b} \equiv \frac{1}{k} \mathcal{G}_{a b}+\alpha A_{a b}+\beta B_{a b}$ and $\Phi=g^{a b} \Phi_{a b}$.

Application to a Local Gravity Action

- It can also be shown, without using the field equations, that ω is a closed form. We have

$$
\begin{equation*}
\delta \omega=\int_{\Sigma} d \Sigma_{a}\left(\delta \sqrt{|g|} \wedge J^{a}+\sqrt{|g|} \delta J^{a}\right) \tag{14}
\end{equation*}
$$

and variation of the current reads

$$
\begin{equation*}
\delta J^{a}=-\frac{1}{2} J^{a} \wedge \delta \ln |g| \tag{15}
\end{equation*}
$$

By virtue of (15) and bearing in mind that J^{a} is anticommuting 2-form, (14) vanishes.

Application to a Local Gravity Action

- There remains to investigate the gauge invariance of ω. After a cumbersome calculation, change in the symplectic current can be written as

$$
\begin{equation*}
\Delta J^{a}=\nabla_{c} \mathcal{F}^{a c}+g^{b c} \delta \Phi_{b c} \wedge \xi^{a}+2 \Phi_{b c} \xi^{c} \wedge \delta g^{a b}+\Phi^{a c} \xi_{c} \wedge \delta \ln |g|+\xi^{a} \wedge \delta \Phi \tag{16}
\end{equation*}
$$

- First term in (16) vanishes when inserted in the integral for ω for sufficiently fast decaying metric variations, the remaining terms vanish on-shell.

Application to a Local Gravity Action

where

$$
\begin{equation*}
\mathcal{F}^{\mathrm{ac}}=-\mathcal{F}^{\mathrm{ca}}=\frac{1}{\kappa} \mathcal{F}_{\kappa}^{\mathrm{ac}}+\alpha \mathcal{F}_{\alpha}^{\mathrm{ac}}+\beta \mathcal{F}_{\beta}^{\mathrm{ac}}, \tag{17}
\end{equation*}
$$

with

$$
\begin{align*}
\mathcal{F}_{\kappa}^{a c} \equiv & 2 \xi^{[c} \wedge \nabla_{b} \delta g^{a] b}-2 \xi_{b} \wedge \nabla^{[c} \delta g^{a] b}-2 \delta g^{b[c} \wedge \nabla_{b} \xi^{a]} \\
& -2 \xi^{[a} \wedge \nabla^{c]} \delta \ln |g|-\delta \ln |g| \wedge \nabla^{[c} \xi^{a]} \tag{18}
\end{align*}
$$

Calculation of Conserved Charges

- We linearize the metric as $g_{a b}=\bar{g}_{a b}+h_{a b}$
- Indices are raised/lowered and covariant derivatives are defined with respect to the background metric $\bar{g}_{a b}$ as usual.
- One should take the diffeomorphisms as the isometries of the background spacetime, meaning $\bar{\nabla}_{a} \bar{\xi}_{b}+\bar{\nabla}_{b} \bar{\xi}_{a}=0$.
- Assume the background spacetime $\bar{g}_{a b}$ admits a globally defined Killing vector $\bar{\xi}_{a}$.
- The variation is identified as $\delta g_{a b} \rightarrow h_{a b}, \delta g^{a b} \rightarrow-h^{a b}$. Therefore, the terms $R_{a b}, R$ are identified with the background ones $\bar{R}_{a b}, \bar{R}$ and terms like $\delta\left(\nabla_{a} R_{b c}\right)$ are taken as $\left(\nabla_{a} R_{b c}\right)_{L}$, where subscript L means linearized version of the corresponding quantity.
- Finally, we write the ξ terms at the right hand side of the wedge products and then drop them.

Calculation of Conserved Charges

- With all these identifications the relevant charge expression is given by

$$
\begin{align*}
Q(\bar{\xi}) & =\frac{1}{2} \int_{\Sigma} d^{D-1} x \sqrt{|\sigma|} n_{a} \bar{\nabla}_{c} Q^{a c} \\
& =\frac{1}{2} \int_{\partial \Sigma} d^{D-2} x \sqrt{\left|\sigma^{(\partial \Sigma)}\right|} n_{a} s_{c} Q^{\mathrm{ac}} \tag{19}
\end{align*}
$$

where Σ is a $(D-1)$-dimensional spacelike hypersurface with induced metric σ and unit normal vector $n^{a}, \partial \Sigma$ (boundary of Σ) is a ($D-2$)-dimensional hypersurface with induced metric $\sigma^{(\partial \Sigma)}$ and unit normal s^{c}.

Calculation of Conserved Charges

$$
\begin{equation*}
Q^{\mathrm{ac}}=-Q^{\mathrm{ca}}=\frac{1}{\kappa} Q_{\kappa}^{\mathrm{ac}}+\alpha Q_{\alpha}^{\mathrm{ac}}+\beta Q_{\beta}^{\mathrm{ac}}, \tag{20}
\end{equation*}
$$

with

$$
\begin{gather*}
Q_{k}^{a c} \equiv 2 \bar{\nabla}_{b} h^{b\left[a \bar{\xi}^{c]}-2 \bar{\nabla}^{[c} h^{a] b} \bar{\xi}_{b}-2 h^{b[c} \bar{\nabla}_{b} \bar{\xi}^{a]}+2\left(\bar{\nabla}^{[c} h\right) \bar{\xi}^{a]}-h \bar{\nabla}^{[c} \bar{\xi}^{a]}\right.} \tag{21}\\
\begin{aligned}
\mathcal{F}_{\kappa}^{a c} \equiv & 21) \\
& -2 \xi^{[c} \wedge \nabla_{b} \delta g^{a] b}-2 \xi_{b} \wedge \nabla^{[c} \delta \nabla^{a] b}-2 \delta \nabla^{b[c} \wedge \nabla_{b} \xi^{a]} \\
& -\ln |g|-\delta \ln |g| \wedge \nabla^{[c} \xi^{a]}
\end{aligned}
\end{gather*}
$$

(22)

Calculation of Conserved Charges

- Charge expressions given above are identical to the ones given in the literature.
- Remember that we assumed $\delta \phi_{a b}=0$ while constructing the vectors. Here, this condition implies $\left(\Phi_{a b}\right)_{L}=0$ at the boundary of the spacetime.

Calculation of Conserved Charges - Examples

- 3-dimensional Lifshitz Blackhole

$$
\begin{array}{r}
d s^{2}=-\frac{r^{6}}{\ell^{6}}\left(1-\frac{M \ell^{2}}{r^{2}}\right) d t^{2}+\frac{\ell^{2}}{r^{2}}\left(1-\frac{M \ell^{2}}{r^{2}}\right)^{-1} d r^{2}+\frac{r^{2}}{\ell^{2}} d x^{2}, \tag{23}\\
\Lambda_{0}=\frac{13}{2 \ell^{2}}, \quad \beta=\frac{2 \ell^{2}}{\kappa}, \quad \alpha=-\frac{3 \ell^{2}}{4 \kappa}, \quad \kappa=16 \pi G
\end{array}
$$

with background

$$
d s^{2}=-\frac{r^{6}}{\ell^{6}} d t^{2}+\frac{\ell^{2}}{r^{2}} d r^{2}+\frac{r^{2}}{\ell^{2}} d x^{2}
$$

Calculation of Conserved Charges - An Example

$$
\begin{gather*}
n^{a}=-\frac{\ell^{3}}{r^{3}} \delta_{t}^{a}, s^{a}=\frac{r}{l} \delta_{r}^{a} \\
E=\lim _{r \rightarrow \infty} \int_{0}^{2 \pi \ell} \frac{r^{3}}{\ell^{3}} n_{t} s_{r} Q^{t r}(\bar{\xi}) d x=\frac{7 m^{2}}{4 G} \tag{24}\\
\left(\Phi_{a b}\right)_{L}=\frac{6 M^{3}}{\ell^{2}} \tag{25}
\end{gather*}
$$

at the boundary.

Conclusion

- We have constructed the symplectic structure of NMG and calculated the conserved charges of some solutions using the diffeomorphism invariance of the symplectic two-form.
- This method gives rise to the condition $\left(\Phi_{a b}\right)_{L}=0$ at the boundary, which the solutions with AdS background satisfy.
- However, solutions with arbitrary background which we have considered do not satisfy the condition $\left(\Phi_{a b}\right)_{L}=0$ at the boundary. This might be the reason for the discrepancy in the thermodynamics of these blackholes.
(Devecioglu,Sarioglu-2011)

