Massive Higher Derivative Gravity Theories

İbrahim Güllü, In Collaboration with Prof. Dr. Bayram Tekin and Tahsin Çağrı Şişman

Dept. of Physics, METU/Ankara

December 27, 2011

- Introduction
 - Based On
 - Motivation
- 2 Massive Higher Derivative Gravity in D-Dimensional Anti-de Sitter Spacetimes
 - Equations of Motion
 - Tree-Level Scattering Amplitude
 - vDVZ Discontinuity
 - New Massive Gravity
- 3 Canonical Structure of Higher Derivative Gravity in 3D
 - Canonical Form-Flat Spacetime
 - The Particle Spectrum for Special Cases
 - Higher Derivative Gravity Plus Chern-Simons Term
 - Conclusion

Based On

This thesis is based on the papers

 I. G., B. Tekin, "Massive Higher Derivative Gravity in D-dimensional Anti-de Sitter Spacetimes", P. R. D 80, 064033 (2009),

and

 I. G., T. Ç. Şişman, B. Tekin, "Canonical Structure of Higher Derivative Gravity in 3D", P. R. D 80, 064033 (2009) D 81, 104017 (2010).

Introduction

- Experience from quantum field theory implies that at high energies Einstein's gravity should be replaced with: Einstein-Hilbert term+Higher Curvature terms,
- Higher curvature terms are motivated by the quantum gravity scenarios such as string theory and asymptotic safety,
- To have a better IR behaviour a mass term can be added to the theory,
- Mass can be given to graviton by adding a Pauli-Fierz mass term,
- In the first part the general quadratic massive gravity theory will be analyzed,
- In the second part the canonical structure of the general quadratic action will be discussed.

Tree-Level Unitarity

- To have a physically meaningful theory it must be unitary.
- Tree level unitarity is tachyon and ghost freedom.
 - Ghost is characterized by negative kinetic energy,
 - Tachyon is characterized by negative mass square.
- Thus, unitarity analysis is basically a check of proper signs in the graviton propagator (-, +, +, ...) that is $\frac{1}{n^2+m^2}$.
- In the canonical form $(\Box m^2)\psi = 0$, $m^2 > 0$.

Equations of Motion

• The most general quadratic gravity model augmented with a Pauli-Fierz mass term is

$$I = \int d^{D}x \sqrt{-g} \left\{ \frac{1}{\kappa} \left(R - 2\Lambda_{0} \right) + \alpha R^{2} + \beta R_{\mu\nu}^{2} + \gamma \left(R_{\mu\nu\sigma\rho}^{2} - 4R_{\mu\nu}^{2} + R^{2} \right) \right\}$$

+
$$\int d^{D}x \sqrt{-g} \left\{ -\frac{M^{2}}{4\kappa} \left(h_{\mu\nu}^{2} - h^{2} \right) + \mathcal{L}_{\text{matter}} \right\}, \qquad (1)$$

- To get the one-particle exchange amplitude we need the linear equations of motion:
 - we take the variation of (1) with respect to the metric $g_{\mu\nu}$, $(-,+,+,\dots)$ to get the equations of motion,
 - then we linearize the equations of motion around a constant curvature background $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$
- The linearized equations of motion are

$$T_{\mu\nu}(h) = a\mathcal{G}_{\mu\nu}^{L} + (2\alpha + \beta) \left(\bar{g}_{\mu\nu}\bar{\Box} - \bar{\nabla}_{\mu}\bar{\nabla}_{\nu} + \frac{2\Lambda}{D-2}\bar{g}_{\mu\nu} \right) R^{L}$$

+ $\beta \left(\bar{\Box}\mathcal{G}_{\mu\nu}^{L} - \frac{2\Lambda}{D-1}\bar{g}_{\mu\nu}R^{L} \right) + \frac{M^{2}}{2\kappa} \left(h_{\mu\nu} - \bar{g}_{\mu\nu}h \right),$ (2)

where we have defined $a \equiv \frac{1}{\kappa} + \frac{4\Lambda D}{D-2}\alpha + \frac{4\Lambda}{D-1}\beta + \frac{4\Lambda(D-3)(D-4)}{(D-1)(D-2)}\gamma$.

Tree-Level Scattering Amplitude

• To get the physical parts of $h_{\mu
u}$ we decompose it as

$$h_{\mu\nu} \equiv h_{\mu\nu}^{TT} + \bar{\nabla}_{(\mu} V_{\nu)} + \bar{\nabla}_{\mu} \bar{\nabla}_{\nu} \phi + \bar{g}_{\mu\nu} \psi, \qquad (3)$$

• Taking divergence and double divergence of (3)

$$h = \overline{\Box}\phi + D\psi, \qquad \overline{\Box}h = \overline{\Box}^2\phi + \frac{2\Lambda}{(D-2)}\overline{\Box}\phi + \overline{\Box}\psi, \qquad (4)$$

where we used $\bar{\nabla}^{\nu}\bar{\nabla}^{\mu}h_{\mu\nu} = \bar{\Box}h$, which is *not* a gauge condition but imposed on us as a result of the nonzero mass term. • Using (4)

$$\psi = \left\{\frac{\Lambda}{\kappa} + 4\Lambda f - c\Lambda\bar{\Box} - \frac{M^2}{2\kappa}\left(D - 1\right)\right\}^{-1} \left(\frac{(D-1)\left(D - 2\right)}{2\Lambda}\bar{\Box} + D\right)^{-1}T, \quad (5)$$

where $c \equiv \frac{4(D-1)\alpha}{D-2} + \frac{D\beta}{D-2}$.

 Decomposing the energy-momentum tensor one can write the one-particle exchange amplitude between two covariantly conserved sources as

$$A = \frac{1}{4} \int d^{D}x \sqrt{-\bar{g}} T'_{\mu\nu}(x) h^{\mu\nu}(x) = \frac{1}{4} \int d^{D}x \sqrt{-\bar{g}} \left(T'_{\mu\nu} h^{TT\mu\nu} + T'\psi \right).$$

Tree-Level Scattering Amplitude

• Finally,

$$4A = 2T'_{\mu\nu}\left\{(\beta\bar{\Box} + a)(\triangle_{L}^{(2)} - \frac{4\Lambda}{D-2}) + \frac{M^{2}}{\kappa}\right\}^{-1}T^{\mu\nu} + \frac{2}{D-1}T'\left\{(\beta\bar{\Box} + a)(\bar{\Box} + \frac{4\Lambda}{D-2}) - \frac{M^{2}}{\kappa}\right\}^{-1}T$$
(7)
$$- \frac{4\Lambda}{(D-2)(D-1)^{2}}T'\left\{(\beta\bar{\Box} + a)(\bar{\Box} + \frac{4\Lambda}{D-2}) - \frac{M^{2}}{\kappa}\right\}^{-1}\left\{\bar{\Box} + \frac{2\Lambda D}{(D-2)(D-1)}\right\}^{-1}T + \frac{2}{(D-2)(D-1)}T'\left\{\frac{1}{\kappa} + 4\Lambda f - c\bar{\Box} - \frac{M^{2}}{2\kappa\Lambda}(D-1)\right\}^{-1}\left\{\bar{\Box} + \frac{2\Lambda D}{(D-2)(D-1)}\right\}^{-1}T.$$

where
$$f \equiv (\alpha D + \beta) \frac{(D-4)}{(D-2)^2} + \gamma \frac{(D-3)(D-4)}{(D-1)(D-2)}$$
.

Tree-Level Scattering Amplitude

- From (7) one can figure out the particle spectrum,
- One can also compute the Newtonian potentials in flat spacetime,
- In curved background the Green's function (matrix) of Lichnerowicz operator must be handled,
- We can see the $M^2
 ightarrow 0$ and $\Lambda
 ightarrow 0$ limits does not commute,
- First taking the flatspace limit we encounter the van Dam-Veltman-Zakharov (vDVZ) discontinuity,
- First taking the massless limit take us to New Massive Gravity (NMG) theory.

vDVZ Discontinuity

• For this case the amplitude become

$$4A = -2T'_{\mu\nu} \left\{ \beta \partial^4 + \frac{1}{\kappa} \partial^2 - \frac{M^2}{\kappa} \right\}^{-1} T^{\mu\nu} + \frac{2}{D-1} T' \left\{ \beta \partial^4 + \frac{1}{\kappa} \partial^2 - \frac{M^2}{\kappa} \right\}^{-1} T \quad (8)$$

Unless $\beta = 0$, we have a massive ghost.

• The Newtonian potential energy between $T'_{00} \equiv m_1 \delta(x - x_1)$, $T^{00} \equiv m_2 \delta(x - x_2)$ in three and four dimensions can be obtained as

$$U = \frac{1}{2\beta(m_{+}^{2} - m_{-}^{2})} \frac{m_{1}m_{2}}{4\pi} [K_{0}(m_{-}r) - K_{0}(m_{+}r)] D = 3,$$

$$U = \frac{m_{1}m_{2}}{3\beta(m_{+}^{2} - m_{-}^{2})} \frac{1}{4\pi r} [e^{-m_{-}r} - e^{-m_{+}r}] D = 4.$$
(9)

where $r \equiv |\vec{x_1} - \vec{x_2}|$. • As $\beta \to 0$, the potential energies become

$$U = -\frac{\kappa}{8\pi} m_1 m_2 K_0(Mr) \qquad D = 3, \tag{10}$$

$$U = -\frac{4}{3} \frac{Gm_1 m_2}{r} e^{-Mr} \qquad D = 4$$
(11)

here K_0 is the modified Bessel function of the second kind.

New Massive Gravity

• For $M^2 = 0$ then taking $\Lambda \to 0$ limit

$$4A = -2T'_{\mu\nu} \left\{ \beta \partial^{4} + \frac{1}{\kappa} \partial^{2} \right\}^{-1} T^{\mu\nu} + \frac{2}{(D-1)} T' \left\{ \beta \partial^{4} + \frac{1}{\kappa} \partial^{2} \right\}^{-1} T$$
$$-\frac{2}{(D-1)(D-2)} T' \left\{ c \partial^{4} - \frac{1}{\kappa} \partial^{2} \right\}^{-1} T$$
(12)

• Generically there are three poles :

$$\partial_1^2 = 0, \qquad \partial_2^2 = -\frac{1}{\kappa\beta} \qquad , \partial_3^2 = \frac{1}{\kappa c}.$$
 (13)

$$Res(\partial_{1}^{2}) = \frac{2\kappa (3-D)}{(D-2)}, \ Res(\partial_{2}^{2}) = \frac{2\kappa (D-2)}{(D-1)}, \ Res\left(\partial_{3}^{2}\right) = -\frac{2\kappa}{(D-1)(D-2)}$$

- From the second pole and its residue; $\kappa\beta<0$ and $\kappa<$ 0,
- From the residue of the massless pole; D = 3
- The residue of the third pole becomes positive for negative κ.
 To eliminate this residue c = 8α + 3β = 0.

New Massive Gravity

Newtonian potential

$$U = \frac{\kappa}{8\pi} m_1 m_2 \left(K_0(m_g r) - K_0(m_0 r) \right) \qquad D = 3, \qquad (14)$$

where $m_g^2 \equiv -\frac{1}{\kappa\beta}$ and $m_0^2 \equiv \frac{1}{\kappa(8\alpha+3\beta)}$. Clearly, m_0 is a massive ghost that gives a repulsive component.

- This result also confirms that, at this level, NGM has the same Newtonian limit as the usual massive gravity (10), if the Pauli-Fierz mass term is chosen as $M = m_g$.
- Beyond three dimensions, in flat space, massive ghost does not decouple unless β = 0. As an example, let us look at D = 4:

$$U = -\frac{Gm_1m_2}{r} \left(1 - \frac{4}{3}e^{-m_g r} + \frac{1}{3}e^{-m_a r}\right),$$
 (15)

where $m_a^2 \equiv \frac{1}{2\kappa(3\alpha+\beta)}$. The middle, repulsive term signals the ghost problem. K.S. Stelle, P. R. D **16**, 953 (1977).

Non-Linear Action

• Generic action in non-linear level is

$$I = \int d^3x \sqrt{-g} \left[\frac{1}{\kappa} R + \alpha R^2 + \beta R_{\mu\nu}^2 + \mathcal{L}_{matter} \right]$$
(16)

• κ, α, β are coupling constants whose signs will be fixed later,

•
$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$
, here $\eta_{\mu\nu}$ is the usual flat space-time metric.

- Our signature is (-,+,+).
- In this conventions the Klein-Gordon equation reads $(\Box m^2)\psi = 0$,

• where
$$\Box = \partial_{\mu}\partial^{\mu} = -\partial_0^2 + \nabla^2$$
.

Linear Action

• The action for $h_{\mu\nu}$ is

$$I = -\frac{1}{2} \int d^3 x \, h_{\mu\nu} \left[\frac{1}{\kappa} \mathcal{G}_L^{\mu\nu} + (2\alpha + \beta) (\eta^{\mu\nu} \Box - \partial^{\mu} \partial^{\nu}) R_L + \beta \Box \mathcal{G}_L^{\mu\nu} \right]$$
(17)

- Here ${\cal G}^{\mu\nu}_L=R^L_{\mu\nu}-\frac{1}{2}\eta^{\mu\nu}R_L$ is the linear Einstein tensor in the flat space-time,
- where $R_L^{\mu\nu} = \frac{1}{2} (\partial_\sigma \partial^\mu h^{\nu\sigma} + \partial_\sigma \partial^\nu h^{\mu\sigma} \Box h^{\mu\nu} \partial^\mu \partial^\nu h)$ and $R_L = \partial_\alpha \partial_\beta h^{\alpha\beta} \Box h$, and $h = \eta_{\mu\nu} h^{\mu\nu}$.
- Decomposition of $h_{\mu\nu}$ gives six free functions of space and time that are;

•
$$h_{ij} = (\delta_{ij} + \hat{\partial}_i \hat{\partial}_j)\phi - \hat{\partial}_i \hat{\partial}_j \chi + (\epsilon_{ik} \hat{\partial}_k \hat{\partial}_j + \epsilon_{jk} \hat{\partial}_k \hat{\partial}_i)\xi$$

• $h_{0i} = -\epsilon_{ij}\partial_j\eta + \partial_iN_L$ and $h_{00} = N$ where $\hat{\partial} \equiv \partial_i/\sqrt{-\nabla^2}$.

Linear Action

• With these equations one can write the linearized Einstein tensor in terms of three functions (using Bianchi identity $\nabla^{\mu}\mathcal{G}_{\nu\mu} = 0$ one can eliminate three of them) which are invariant under gauge transformations $\delta_{\zeta}h_{\mu\nu} = \partial_{\mu}\zeta_{\nu} + \partial_{\nu}\zeta_{\mu}$:

•
$$\mathcal{G}_{00}^L = -\frac{1}{2} \nabla^2 \phi$$
, $\mathcal{G}_{0i}^L = -\frac{1}{2} (\epsilon_{ik} \partial_k \sigma + \partial_i \phi)$ and

•
$$\mathcal{G}_{ij}^{L} = -\frac{1}{2} \left| (\delta_{ij} + \hat{\partial}_{i} \hat{\partial}_{j}) q - \hat{\partial}_{i} \hat{\partial}_{j} \ddot{\phi} - (\epsilon_{ik} \hat{\partial}_{k} \hat{\partial}_{j} + \epsilon_{jk} \hat{\partial}_{k} \hat{\partial}_{i}) \dot{\sigma} \right|.$$

• Where
$$q \equiv \nabla^2 N - 2\nabla^2 \dot{N}_L + \ddot{\chi}, \ \sigma \equiv \dot{\xi} - \nabla^2 \eta$$
.

Canonical Form of The Linear Action

• After writing all the terms in the linear action in terms of the gauge invariant functions one get the canonical form as

$$I = \frac{1}{2} \int d^{3}x \left[\frac{1}{\kappa} \phi q + (2\alpha + \beta)(q - \Box \phi)^{2} + \beta q \Box \phi \right] \\ + \frac{\beta}{2} \int d^{3}x \left(\sigma \Box \sigma + \frac{1}{\kappa \beta} \sigma^{2} \right),$$
(18)

- σ is a scalar field with mass $m_g^2 = -\frac{1}{\kappa\beta}$,
- To be tachyon-free $\kappa\beta <$ 0,
- To be a non-ghost $\beta > 0$, therefore $\kappa < 0$.
- Let us analyze the two cases separately which are

$$\begin{array}{ccc} \mathbf{0} & 2\alpha + \beta \neq \mathbf{0} \\ \mathbf{0} & 2\alpha + \beta = \mathbf{0} \end{array}$$

$$2\alpha + \beta = 0$$

$2\alpha + \beta \neq 0$ and $2\alpha + \beta = 0$ Theories

• Taking variation with respect to q field and eliminating it one gets

$$I = \frac{1}{2} \int d^3 x \left[\frac{\beta \left(8\alpha + 3\beta\right)}{4 \left(2\alpha + \beta\right)} \left(\Box\phi\right)^2 + \frac{\left(4\alpha + \beta\right)}{2\kappa \left(2\alpha + \beta\right)} \phi \Box\phi - \frac{1}{4\kappa^2 \left(2\alpha + \beta\right)} \phi^2 \right] + \frac{\beta}{2} \int d^3 x \left(\sigma \Box\sigma + \frac{1}{\kappa\beta} \sigma^2\right),$$
(19)

• $8\alpha + 3\beta = 0$: The higher derivative term vanishes and the theory does not describe a higher derivative Pais-Uhlenbeck oscillator

$$I_{NMG} = -\frac{1}{2\kappa} \int d^3 x \left(\phi \Box \phi + \frac{1}{\kappa\beta} \phi^2 \right) + \frac{\beta}{2} \int d^3 x \left(\sigma \Box \sigma + \frac{1}{\kappa\beta} \sigma^2 \right)$$
(20)

$2\alpha + \beta \neq 0$ and $2\alpha + \beta = 0$ Theories

• Taking variation with respect to q field and eliminating it one gets

$$I = \frac{1}{2} \int d^3 x \left[\frac{\beta \left(8\alpha + 3\beta\right)}{4 \left(2\alpha + \beta\right)} \left(\Box\phi\right)^2 + \frac{\left(4\alpha + \beta\right)}{2\kappa \left(2\alpha + \beta\right)} \phi \Box\phi - \frac{1}{4\kappa^2 \left(2\alpha + \beta\right)} \phi^2 \right] + \frac{\beta}{2} \int d^3 x \left(\sigma \Box\sigma + \frac{1}{\kappa\beta} \sigma^2\right),$$
(19)

• $8\alpha + 3\beta = 0$: The higher derivative term vanishes and the theory does not describe a higher derivative Pais-Uhlenbeck oscillator

$$I_{NMG} = -\frac{1}{2\kappa} \int d^3x \left(\phi \Box \phi + \frac{1}{\kappa\beta} \phi^2 \right) + \frac{\beta}{2} \int d^3x \left(\sigma \Box \sigma + \frac{1}{\kappa\beta} \sigma^2 \right)$$
(20)

The NMG theory gives two massive spin-2 fields with the same masses therefore this is a parity invariant theory.

 4α + β = 0: The theory has a tachyonic excitation since higher time derivatives in a Pais-Uhlenbeck oscillators give ghost-like excitations,

$2\alpha + \beta \neq 0$ and $2\alpha + \beta = 0$ Theories

• Taking variation with respect to q field and eliminating it one gets

$$I = \frac{1}{2} \int d^3 x \left[\frac{\beta \left(8\alpha + 3\beta\right)}{4 \left(2\alpha + \beta\right)} \left(\Box \phi\right)^2 + \frac{\left(4\alpha + \beta\right)}{2\kappa \left(2\alpha + \beta\right)} \phi \Box \phi - \frac{1}{4\kappa^2 \left(2\alpha + \beta\right)} \phi^2 \right] + \frac{\beta}{2} \int d^3 x \left(\sigma \Box \sigma + \frac{1}{\kappa \beta} \sigma^2\right),$$
(19)

• $8\alpha + 3\beta = 0$: The higher derivative term vanishes and the theory does not describe a higher derivative Pais-Uhlenbeck oscillator

$$I_{NMG} = -\frac{1}{2\kappa} \int d^3x \left(\phi \Box \phi + \frac{1}{\kappa\beta} \phi^2 \right) + \frac{\beta}{2} \int d^3x \left(\sigma \Box \sigma + \frac{1}{\kappa\beta} \sigma^2 \right)$$
(20)

- 4α + β = 0: The theory has a tachyonic excitation since higher time derivatives in a Pais-Uhlenbeck oscillators give ghost-like excitations,
- $\beta = 0$: In this limit the theory becomes ghost and tachyon free for $\kappa > 0$.

$2\alpha + \beta \neq 0$ and $2\alpha + \beta = 0$ Theories

• Taking variation with respect to q field and eliminating it one gets

$$I = \frac{1}{2} \int d^3 x \left[\frac{\beta \left(8\alpha + 3\beta\right)}{4 \left(2\alpha + \beta\right)} \left(\Box \phi\right)^2 + \frac{\left(4\alpha + \beta\right)}{2\kappa \left(2\alpha + \beta\right)} \phi \Box \phi - \frac{1}{4\kappa^2 \left(2\alpha + \beta\right)} \phi^2 \right] + \frac{\beta}{2} \int d^3 x \left(\sigma \Box \sigma + \frac{1}{\kappa \beta} \sigma^2\right),$$
(19)

• $8\alpha + 3\beta = 0$: The higher derivative term vanishes and the theory does not describe a higher derivative Pais-Uhlenbeck oscillator

$$I_{NMG} = -\frac{1}{2\kappa} \int d^3x \left(\phi \Box \phi + \frac{1}{\kappa\beta} \phi^2 \right) + \frac{\beta}{2} \int d^3x \left(\sigma \Box \sigma + \frac{1}{\kappa\beta} \sigma^2 \right)$$
(20)

- 4α + β = 0: The theory has a tachyonic excitation since higher time derivatives in a Pais-Uhlenbeck oscillators give ghost-like excitations,
- β = 0: In this limit the theory becomes ghost and tachyon free for κ > 0.
 2α + β = 0: In this case the action is

$$I = \frac{m_g^2 \beta}{2} \int d^3 x \left[\left(\Psi_1 \Box \Psi_1 - m_g^2 \Psi_1^2 \right) - \left(\Psi_2 \Box \Psi_2 - m_g^2 \Psi_2^2 \right) \right].$$
(21)

$2\alpha + \beta \neq 0$ and $2\alpha + \beta = 0$ Theories

• Taking variation with respect to q field and eliminating it one gets

$$I = \frac{1}{2} \int d^3 x \left[\frac{\beta \left(8\alpha + 3\beta\right)}{4 \left(2\alpha + \beta\right)} \left(\Box \phi\right)^2 + \frac{\left(4\alpha + \beta\right)}{2\kappa \left(2\alpha + \beta\right)} \phi \Box \phi - \frac{1}{4\kappa^2 \left(2\alpha + \beta\right)} \phi^2 \right] + \frac{\beta}{2} \int d^3 x \left(\sigma \Box \sigma + \frac{1}{\kappa \beta} \sigma^2\right),$$
(19)

• $8\alpha + 3\beta = 0$: The higher derivative term vanishes and the theory does not describe a higher derivative Pais-Uhlenbeck oscillator

$$I_{NMG} = -\frac{1}{2\kappa} \int d^3x \left(\phi \Box \phi + \frac{1}{\kappa\beta} \phi^2 \right) + \frac{\beta}{2} \int d^3x \left(\sigma \Box \sigma + \frac{1}{\kappa\beta} \sigma^2 \right)$$
(20)

- 4α + β = 0: The theory has a tachyonic excitation since higher time derivatives in a Pais-Uhlenbeck oscillators give ghost-like excitations,
- $\beta = 0$: In this limit the theory becomes ghost and tachyon free for $\kappa > 0$. • $2\alpha + \beta = 0$: In this case the action is

$$I = \frac{m_g^2 \beta}{2} \int d^3 x \left[\left(\Psi_1 \Box \Psi_1 - m_g^2 \Psi_1^2 \right) - \left(\Psi_2 \Box \Psi_2 - m_g^2 \Psi_2^2 \right) \right].$$
(21)

Canonical Form-Flat Spacetime The Particle Spectrum for Speci

Higher Derivative Gravity Plus Chern-Simons Term

• The gravitational Chern-Simons term is

$$-\frac{1}{2\mu}\int d^{3}x\,\sqrt{-g}\epsilon^{\lambda\mu\nu}\Gamma^{\rho}_{\ \lambda\sigma}\left(\partial_{\mu}\Gamma^{\sigma}_{\ \rho\nu}+\frac{2}{3}\Gamma^{\sigma}_{\ \mu\beta}\Gamma^{\beta}_{\ \nu\rho}\right) \tag{22}$$

• Linearization of this term gives $I_{CS} = \frac{1}{2\mu} \int d^3 x \, \sigma \left(q + \Box \phi \right)$, and the total action becomes

$$I = \frac{1}{2} \int d^{3}x \left[\frac{1}{\kappa} \left(\phi q + \sigma^{2} \right) + (2\alpha + \beta) \left(q - \Box \phi \right)^{2} + \beta \left(q \Box \phi + \sigma \Box \sigma \right) + \frac{1}{\mu} \sigma \left(q + \Box \phi \right) \right]$$
(23)

- Assuming $2\alpha + \beta \neq 0$,
- Considering only the NMG limit
- Eliminating the q term one gets

$$I_{NMG-CS} = \frac{\beta}{2} \int d^3x \left\{ \left[\sigma \Box \sigma - \left(m_g^2 + \frac{1}{\mu^2 \beta^2} \right) \sigma^2 \right] + \frac{2m_g^2}{\beta \mu} \sigma \phi + m_g^2 \left(\phi \Box \phi - m_g^2 \phi^2 \right) \right\}$$
(24)

Canonical Form-Flat Spacetime The Particle Spectrum for Speci

Higher Derivative Gravity Plus Chern-Simons Term

• The gravitational Chern-Simons term is

$$-\frac{1}{2\mu}\int d^{3}x\,\sqrt{-g}\epsilon^{\lambda\mu\nu}\Gamma^{\rho}_{\ \lambda\sigma}\left(\partial_{\mu}\Gamma^{\sigma}_{\ \rho\nu}+\frac{2}{3}\Gamma^{\sigma}_{\ \mu\beta}\Gamma^{\beta}_{\ \nu\rho}\right) \tag{22}$$

• Linearization of this term gives $I_{CS} = \frac{1}{2\mu} \int d^3 x \, \sigma \left(q + \Box \phi \right)$, and the total action becomes

$$I = \frac{1}{2} \int d^{3}x \left[\frac{1}{\kappa} \left(\phi q + \sigma^{2} \right) + (2\alpha + \beta) \left(q - \Box \phi \right)^{2} + \beta \left(q \Box \phi + \sigma \Box \sigma \right) + \frac{1}{\mu} \sigma \left(q + \Box \phi \right) \right]$$
(23)

- Assuming $2\alpha + \beta \neq 0$,
- Considering only the NMG limit
- Eliminating the q term one gets

$$I_{NMG-CS} = \frac{\beta}{2} \int d^3x \left\{ \left[\sigma \Box \sigma - \left(m_g^2 + \frac{1}{\mu^2 \beta^2} \right) \sigma^2 \right] + \frac{2m_g^2}{\beta \mu} \sigma \phi + m_g^2 \left(\phi \Box \phi - m_g^2 \phi^2 \right) \right\}$$
(24)

Decoupling of σ and ϕ

- First take the Fourier transform of the fields
- Put the Lagrangian in matrix form
- Diagonalize the matrix

$$I_{BHT-CS} = \frac{\beta}{2} \int d^3x \left(\Psi_{+} \Box \Psi_{+} - m_{+}^2 \Psi_{+}^2 + \Psi_{-} \Box \Psi_{-} - m_{-}^2 \Psi_{-}^2 \right), \quad (25)$$

where
$$m_{\pm}^2 = m_g^2 + \frac{1}{2\mu^2\beta^2} \pm \frac{1}{\mu\beta}\sqrt{m_g^2 + \frac{1}{4\mu^2\beta^2}}$$
,

- Since $m_+ \neq m_-$ it is a parity violating theory
- $\beta \rightarrow 0$ gives a single degree of freedom where m_+ diverges and $m_- = -|\mu|/\kappa$.

Decoupling of σ and ϕ

- First take the Fourier transform of the fields
- Put the Lagrangian in matrix form
- Diagonalize the matrix

$$I_{BHT-CS} = \frac{\beta}{2} \int d^3x \left(\Psi_{+} \Box \Psi_{+} - m_{+}^2 \Psi_{+}^2 + \Psi_{-} \Box \Psi_{-} - m_{-}^2 \Psi_{-}^2 \right), \quad (25)$$

where $m_{\pm}^2 = m_g^2 + \frac{1}{2\mu^2\beta^2} \pm \frac{1}{\mu\beta}\sqrt{m_g^2 + \frac{1}{4\mu^2\beta^2}}$,

- Since $m_+ \neq m_-$ it is a parity violating theory
- $\beta \rightarrow 0$ gives a single degree of freedom where m_+ diverges and $m_- = -|\mu|/\kappa.$

Conclusion

- We compute the one-particle scattering amplitude of the most general quadratic curvature gravity augmented with a PF mass term,
- For the flatspace and massless limit we encounter with the vDVZ discontinuity and NMG,
- NMG is non-ghost and tachyon-free theory at tree-level,
- The canonical structure of the linearized quadratic gravity models has been analyzed, in the flat spacetime,
- The analysis is done in a gauge invariant way,
- The general action is decoupled into three harmonic oscillators and only the NMG limit gives us a unitary and tachyon free theory,
- From the general canonical action one can see that NMG is not a higher derivative Pais-Uhlenbeck oscillator,
- We extend our discussion by adding a gravitational Chern-Simons term and analyze it for the NMG case, in the flat spacetime,
- The unitarity of NMG must be checked for loop levels.

The End

Thank You...