

Search for Supersymmetry in the ATLAS Experiment

Nurcan Ozturk University of Texas at Arlington

ATLAS Collaboration

Ankara YEF Gunleri December 27-30, 2011

Introduction

- Why Supersymmetry? Provides solution to the following problems the Standard Model (SM) has:
 - Gravity is not yet incorporated
 - Hierarchy/naturalness problem
 - Lack of unification of couplings
 - Dark matter problem
- Minimal Supersymmetric Standard Model (MSSM)
 - A superpartner for each SM particle, 5 Higgs bosons
 - 105 parameters. Minimal flavor violation -> 19 parameters
 - If R parity conserved: R=(-1)³(B-L)+2S
 - SUSY particles pair produced
 - LSP (Lightest SUSY particle) stable
- SUSY is broken, SUSY breaking defines the phenomenology: mSUGRA, GMSB, AMSB, …

2011 Data Taking

- Highest luminosity = 3.65·10³³ cm⁻²s⁻¹
- Recorded luminosity = 5.257 fb⁻¹

Excellent detector performance

0-lepton Channel

Simplified models: gluino and squark masses below 700 GeV and 875 GeV respectively excluded for gluino or squark masses below 2 TeV. The limit increases to 1075 GeV for equal mass gluinos and squarks. Additional model interpretations: Simplified models with massive neutralino LSP. Minimal Universal Extra Dimensions model. ATLAS-CONF-2011-155

Search channel: jets + Etmiss + no leptons

MSUGRA/CMSSM model: gluinos with masses below 950 GeV are excluded at 95% CL.

Multi-jets Channel

arXiV:1110.2299, 1.34 fb⁻¹

- Search channel: at least 6, 7 or 8 jets + Etmiss + no lepton
- Increase sensitivity to models with many-body decays.
- SUSY models with gluinos with masses near the TeV scale and relatively heavy squarks.
- MSUGRA/CMSSM model:
 - For equal squark and gluino masses, masses below 520 GeV are excluded.
 - For m(squark) = 2 x m(gluino), gluinos with masses below 680 GeV are excluded.

1-lepton Channel

Supersymmetric models with bilinear R-parity violation: for equal squark and gluino masses, masses below 760 GeV are excluded.

See also arXiv paper for limits set within Simplified Models.

arXiv:1109.6606, 1.04 fb⁻¹

Search channel: jets + Etmiss + 1 isolated lepton

MSUGRA/CMSSM model: for equal squark and gluino masses, masses below 820 GeV are excluded.

2-lepton Channel

arXiV:1110.6189, 1.04 fb-1

Search channel: jets+Etmiss+2 isolated lepton

Simplified model of direct gaugino production: In same sign dilepton channel, charginos with masses below 200 GeV are excluded.

ATLAS-CONF-2011-156 GMSB model interpretation

Nurcan Ozturk

2-photon Channel

Nurcan Ozturk

b-jet Channel (with 0-lepton)

b-jet Channel (with 1-lepton)

Interpretation: gluino -> 2 top + LSP

Results updated to 2.05 fb⁻¹, however not yet public

ATLAS-CONF-2011-130, 1.03 fb⁻¹

Search for 3rd generation squarks via stops and sbottoms in gluino decays

Search channel: at least 4 jets (at least one b-tagged) + Etmiss + 1 isolated lepton

Interpretation: gluino -> stop (->b+x)+ top

b-jet Channel (with 0-lepton) – Search for SO(10) SUSY

- ATLAS-CONF-2011-098, 0.83 fb⁻¹
- Motivation: Yukawa-unified SO(10) SUSY GUT models are compelling models offering light gluinos with ~300-600 GeV.
- SUSY events: gluino pair production followed by 3-body decays to b-jets.
- Two model lines: DR3 model gluinos with masses below 570 GeV are excluded. HS model– gluinos with masses below 450 GeV excluded.
- Results updated to 2.05 fb⁻¹, however not yet public.

Other Searches

- Search for 3rd generation squarks major motivation for SUSY at low energies
 - Direct sbottom pair production arXiv:1112.3832, 2.05 fb⁻¹
 - Direct stop pair production arXiv:1109.4725, 1.04 fb⁻¹
- Trileptons ATLAS-CONF-2011-039, 34 pb⁻¹, update to 2011 data in pipeline
- Special final states:
 - Resonant sneutrino R-parity violation arXiv:1109.3089, 1.07 fb⁻¹
 - Disappearing tracks search for AMSB, 1.02 fb⁻¹
 - Displaced vertex R-parity violation arXiv:1109.2242, 33 pb⁻¹
 - Long-lived particles:
 - arXiv:1103.1984, 34 pb⁻¹
 - arXiv:1106.4495 37 pb⁻¹

Summary: Mass reach of ATLAS SUSY searches

	ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec. 2011)					
	· · · · · · · · · · · · · · · · · · ·					
MSUGRA/CMSSM : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6572] 950 GeV $\tilde{q} = \tilde{g}$ mass					
MSUGRA/CMSSM : 1-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6606] 820 GeV $\widetilde{q} = \widetilde{g}$ mass Preliminary					
MSUGRA/CMSSM : multijets + $E_{T,miss}$	L=1.3 fb ⁻¹ (2011) [arXiv:1110.2299] 680 GeV \tilde{g} mass (for $m(\tilde{q}) = 2m(\tilde{g})$)					
Simpl. mod. : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6572] 1.075 TeV $\tilde{q} = \tilde{g}$ mass (light $\tilde{\chi}_1^0$) $\int Ldt = (0.03 - 2.0)$ fb ⁻¹					
Simpl. mod. : 0-lep + j's + $E_{T,miss}$	$L=1.0 \text{ fb}^{-1}(2011) [arXiv:1109.6572] 875 \text{ GeV} \widetilde{q} \text{ mass } (m(\widetilde{g}) < 2 \text{ TeV}, \text{ light } \widetilde{\chi}_1^0) Is = 7 \text{ TeV}$					
Simpl. mod. : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6572] 700 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1^0)$					
Simpl. mod. : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-155] 700 GeV \tilde{q} mass $(m(\tilde{g}) < 2 \text{ TeV}, m(\tilde{\chi}_1^0) < 200 \text{ GeV})$					
Simpl. mod. : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-155] 650 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, m(\tilde{\chi}_1^0) < 200 \text{ GeV})$					
Simpl. mod. $(\tilde{g} \rightarrow q \overline{q} \tilde{\chi}^{\pm})$: 1-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6606] 600 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV}, \Delta m(\tilde{\chi}^{\pm}, \tilde{\chi}^0) / \Delta m(\tilde{g}, \tilde{\chi}^0) > 1/2)$					
Simpl. mod. : 0-lep + b-jets + j's + $E_{T,miss}$	L=0.83 fb ⁻¹ (2011) [ATLAS-CONF-2011-098] 720 GeV \tilde{g} mass $(m(\tilde{b}) < 600 \text{ GeV}, \text{ light } \tilde{\chi}_1^0)$					
Simpl. mod. $(\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0)$: 1-lep + b-jets + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-130] 540 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 80 \text{ GeV})$					
Simpl. mod. $(\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0)$: 2 b-jets + $E_{T,miss}$	L=2.05 fb ⁻¹ (2011) [Preliminary] 390 GeV \tilde{b} mass ($m(\tilde{\chi}_{1}^{0}) < 60$ GeV)					
Simpl. mod. $(\tilde{\chi}^{\pm}_{7}\tilde{\chi}^{0}_{2} \rightarrow 3I \tilde{\chi}^{0}_{1})$: 2-lep SS + $E_{T,\text{miss}}$	$\sum_{L=1.0 \text{ fb}^{-1}(2011) \text{ [arXiv:1110.6189]}}^{200 \text{ GeV}} \widetilde{\chi}_{+}^{\pm} \text{ mass (light } \widetilde{\chi}_{+}^{0}, m(\widetilde{I}) = \frac{1}{2}(m(\widetilde{\chi}_{+}^{\pm}) + m(\widetilde{\chi}_{+}^{0})))$					
GMSB : 2-lep OS _{SF} + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156] 810 GeV \tilde{g} mass (corresp. to $\Lambda < 35$ TeV, tan $\beta < 35$)					
GGM + Simpl. model : $\gamma\gamma + E_{T,\text{miss}}$	L=1.1 fb ⁻¹ (2011) [arXiv:1111.4116] 805 GeV g mass (<i>m</i> (bino) > 50 GeV)					
GMSB : stable τ	L=37 pb ⁻¹ (2010) [1106.4495] $\tilde{\tau}$ mass					
AMSB : long-lived $\widetilde{\chi}_1^\pm$	L=1.0 fb ⁻¹ (2011) [Prei] $\tilde{\chi}_{1}^{\pm}$ mass (0.5 < $\tau(\tilde{\chi}_{1}^{\pm})$ < 2 ns)					
Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984] 562 GeV g mass					
Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984] 294 GeV b mass					
Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984] 309 GeV t mass					
Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	L=34 pb ⁻¹ (2010) [arXiv:1110.2693] sgluon mass (excl: $m_{sg} < 100 \text{ GeV}, m_{sg} \approx 140 \pm 3 \text{ GeV}$					
RPV : high-mass eµ	L=1.1 fb ⁻¹ (2011) [arXiv:1109.3089] 1.32 TeV \tilde{v}_{τ} mass (λ'_{311} =0.10, λ_{312} =0.05)					
Bilinear RPV : 1-lep + j's + $E_{T,miss}$	$L=1.0 \text{ fb}^{-1}$ (2011) [arXiv:1109.6606] 760 GeV $\tilde{q} = \tilde{g} \text{ mass } (c\tau_{1.Sp} < 15 \text{ mm})$					
	10 ⁻¹ 1 10					
*Only a selection of the available results leading to mass limit	s shown Mass scale [TeV]					

Nurcan Ozturk

Is SUSY Still Alive?

SUSY still well alive, since no hard info, yet, on the crucial configuration

Nurcan Ozturk

Conclusions

□ SUSY is not dead (exp. view) : still lot of phase space to explore (M, ΔM, Δm)

Please tune for ATLAS SUSY results at: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Backup Slides

Nurcan Ozturk - University of Texas at Arlington

0-lepton Channel – Signal regions

Search channel: final states with jets+Etmiss+no leptons

Signal Region	≥ 2-jet	≥ 3-jet	≥ 4-jet	High mass
$E_{ m T}^{ m miss}$	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80
Third jet $p_{\rm T}$	_	> 40	> 40	> 80
Fourth jet $p_{\rm T}$	_	_	> 40	> 80
$\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.3	> 0.25	> 0.25	> 0.2
$m_{ m eff}$	> 1000	> 1000	> 500/1000	> 1100

Simplified Models

The simplified models by construction reduce the supersymmetric parameter space to a maximum of three free parameters, from the list below:

- 1. The mass of the degenerate first- and second-generation squarks, m_q.
- 2. The mass of the gluino, m_g.
- The mass of the neutralino LSP, m_p⁰.
- 4. The parameter x, defined as

$$x = \frac{m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^{0}}}{m_{\tilde{q}_L, \tilde{g}} - m_{\tilde{\chi}_1^{0}}},$$
(1)

which controls the mass of the lighter chargino relative to the squark or gluino and the LSP.

Yukawa-unified SO(10) SUSY Model

- Motivation: Yukawa-unified SO(10) SUSY GUT models are compelling models offering an early SUSY discovery. Light gluinos with ~300-600 GeV.
 - Paper by Howard Baer etal, JHEP 1002:055,2010. arXiv:0911.4739 [hep-ph].
- Model proposed to SUSY Working Group by N. Ozturk. Prepared Monte Carlo samples. Work in collaboration with P. Skubic and A. Marzin (Univ. of Oklahoma).
- SO(10)-inspired SUSY parameter space:
 - m₁₆: common mass of all scalars at M_{GUT}
 - m_{1/2}: common GUT scale gaugino mass
 - A₀ : common GUT scale trilinear soft term
 - tan(β) : the ratio of Higgs field vevs
 - sign(μ) : sign of superpotential Higgs mass μ
 - m(top): top quark mass
 - Higgs soft masses at GUT scale: $m^2_{H_{u,d}} = m^2_{10} \,\mathrm{m}^2 M^2_D$
- m₁₀: common mass for Higgs scalars at M_{GUT}
- M²_D: parametrizes either D-term splitting (DR3 model) or Higgs-only (HS model) soft mass splitting

SO(10) SUSY Mass Spectra

- Scan parameter space to search for Yukawa-unified solutions.
- Examine R=max(f_t, f_b, f_τ)/min(f_t, f_b, f_τ) (degree of Yukawa unification) for solutions with R~1.
- Yukawa-unified solutions are found only for special choices of GUT scale boundary conditions:
 - $A_0^2 = 2m_{10}^2 = 4m_{16}^2$
 - m₁₆ ~ 5 15 TeV
 - m_{1/2} much less than m₁₆ (20-100 GeV)
 - tan(β) ~50
- Then SUSY mass spectrum is given by:
 - First and second generation squarks and sleptons: ~10 TeV
 - Third generation squarks, sleptons, μ and $m_{A_{\perp}}$ ~1 3 TeV
 - Light gluinos with ~300-600 GeV, charginos with 100-180 GeV
 - The lightest neutralino with 50-90 GeV
 - SUSY events are characterized by gluino pair production followed by 3-body decays to states with high multiplicity of b-jets. In addition, OSSF dileptons with mass 40-80 GeV is expected.

SO(10) SUSY Monte Carlo Samples – Scan of m_{1/2} (Scan of gluino mass)

m1/2 (GeV)	Sigma (NLO) (pb)	m1/2 (GeV)	Sigma (NLO) (pb)
35	42.6	34	37.5
44	31.6	45	21.8
60	16.2	60	11.6
75	9.2	75	6.8
90	5.6	90	4.3
105	3.6	105	2.7
120	2.4	120	1.9
135	1.6	135	1.3
150	1.2	150	0.9
165	0.9	165	0.7
180	0.6	180	0.5

Two model lines: HS model DR3 model

With $m_{1/2}$ =180, getting quite out of good Yukawa unified region, thus model excluded (gluinos above ~600 GeV)