The Casimir Effect in Krein Space (two parallel plates & a cylinder)

Tanhayi- Casimir effect- Ankara University

Outline

- A brief review of Casimir effect
- Krein space
- Casimir effect in Krein Space Quantization
- Some examples (*two parallel plates and a cylinder*)

Casimir effect

H. Casimir (1909-2000)

An attractive force between two <u>uncharged</u>, parallel conducting plates was predicted by Casimir in 1948,

this effect quickly received increasing attention In 1996, this tiny force was experimentally measured,

S. K. Lamoreaux [Phys. Rev. Lett. 78, 5 (1997)],

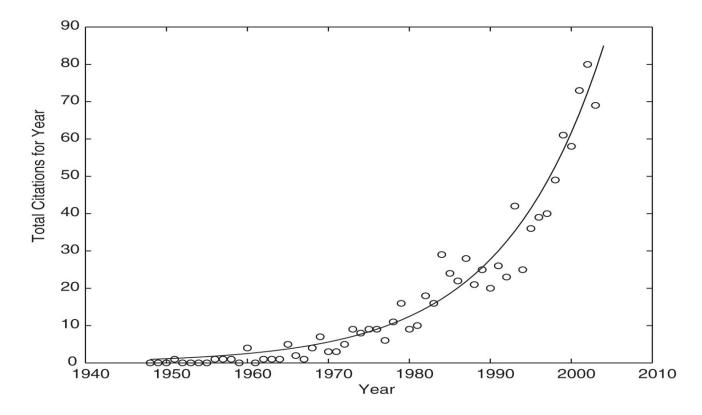


Figure 1. Number of citations per year of Casimir's 1948 paper. The time constant of exponential increase is about 12 years.

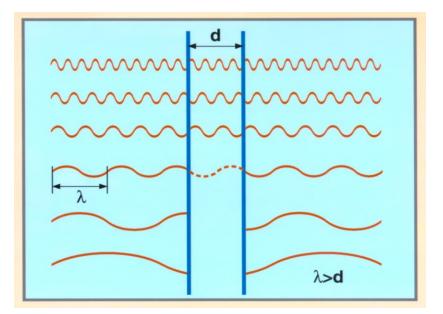
[Graph from D. Budker's powerpoint presentation]

This is a pure quantum effect,

it can be regarded as the physical manifestation of the zero-point energy, and:

its quantum nature can be understood by the zero-point fluctuation of the quantum fields In a simple way it is...
only those virtual photons
whose wavelengths satisfy
the following condition

$$d = n \frac{\lambda}{2}$$
, n is integer,



It is a boundary condition...

there exists an infinite number of virtual photons inside and outside, So, there are two infinities... these cause a quantum pressure!!

- in the ideal situation, at zero temperature for instance, there are no real photons ...
- So, it is only the vacuum, i.e., the ground state of QED which causes the plates to attract each other

M. Bordag, et al, Advances in the Casimir Effect, Oxford Pub. 2009

One can find a lot of interesting papers about the Casimir effect in the literatures

In fact:

Krein space is defined as a direct sum of an Hilbert space and an atni-Hilbert space (negative inner product space)

$$\mathcal{K} = \mathcal{H}_+ \oplus \mathcal{H}_-$$

- Note that this space (K) is equipped with an indefinite inner product which means that some (`unphysical') states have a negative norm.
- these `unphysical' states do not propagate in the physical world;
- the direct consequence is that:
- the physical boundary conditions have no effect on these sates,

T. Garidi, et.al, J.Phys. A38 (2005) 245

Krein space vs. Hilbert space: The advantages

- This method has already been successfully applied to covariant quantization of massless minimally coupled scalar field in de Sitter space,
- it means:
- the covariant quantization should be carried out in Krein Space,

J-P Gazeau, et.al, Class. Quant. Grav. 17 (2000) 1415

- it was shown that within this method of quantization, the one-loop effective action for QED remains automatically finite
- moreover, the vacuum energy of the free field vanishes without any need of reordering the terms $< 0|T^{00}|0>= 0$

M.V. Takook, Phys. Lett. B 704, 326 (2011)
M.V. Takook Int.J.Mod.Phys. E11 (2002) 509-518,

Ibid Int.J.Mod.Phys. E14 (2005) 219-224.

Examples<u>:</u> The Scalar field with B.C.

Klein-Gordon equation:

 $(\Box - m^2)\phi = 0,$

two sets of solutions:

 $u_P(\vec{k}, t, \vec{x}) = \frac{e^{i\vec{k}\cdot\vec{x} - iwt}}{\sqrt{(2\pi)2w}}, \text{ and } u_N(\vec{k}, t, \vec{x}) = \frac{e^{-i\vec{k}\cdot\vec{x} + iwt}}{\sqrt{(2\pi)2w}},$

According to the following inner product:

$$\langle \phi_1, \phi_2 \rangle = i \int_{t=const} dx (\phi_1^* \partial_t \phi_2 - \phi_2 \partial_t \phi_1^*),$$

We have:

$$\langle u_P(\vec{k}, \vec{x}, t), u_P(\vec{k}', \vec{x}, t) \rangle = \delta(\vec{k} - \vec{k}'),$$

$$\langle u_N(\vec{k}, \vec{x}, t), u_N(\vec{k}', \vec{x}, t) \rangle = -\delta(\vec{k} - \vec{k}'),$$

$$\langle u_P(\vec{k}, \vec{x}, t), u_N(\vec{k}', \vec{x}, t) \rangle = 0.$$

These modes will be used in the definition of the quantum fields in Krein space Hilbert space calculations, 1+1 dim.s:
for two parallel plates, by imposing the boundary condition namely

$$u_p(k, 0, t) = u_p(k, a, t) = 0,$$

we obtain:

$$u_p(k_N, x, t) = \left(\frac{1}{a\omega_N}\right)^{1/2} e^{-i\omega_N t} sink_N x,$$

$$\omega_N = (m^2 + k_N^2)^{1/2}, \ k_N = \frac{N\pi}{a}, \ N = 1, 2, 3, \dots$$

Total vacuum energy between the plates becomes:

$$E_0(a) = \int_0^a \langle 0|T_{00}|0\rangle dx = \frac{1}{2} \sum_{N=1}^\infty \omega_N.$$

In QFT we are familiar with such kind of infinities. After regularization and renormalizion, the finite value is obtained.

$$E_0^{Ren} = -\frac{\pi}{24a},$$

This is the Casimir energy accordingly the Casimir force reads

$$F(a) = -\frac{\partial}{\partial a} E_0^{Ren} = -\frac{\pi}{24a^2},$$

Field operators in Krein Space

In Krein space the field operator is defined by:

$$\phi(t, x) = \phi_P(t, x) + \phi_N(t, x)$$

where:

$$\begin{split} \phi_P(t,\vec{x}) &= \int d\vec{k} [a(\vec{k}) u_P(\vec{k},t,\vec{x}) + a^{\dagger}(\vec{k}) u_P^*(\vec{k},t,\vec{x})], \\ \phi_N(t,\vec{x}) &= \int d\vec{k} [b(\vec{k}) u_N(\vec{k},t,\vec{x}) + b^{\dagger}(\vec{k}) u_N^*(\vec{k},t,\vec{x})]. \end{split}$$

And after imposing the B.D. the quantum field reads as

$$\phi(t,x) = \sum_{N} \left(a_N u_p(k_N, x, t) + a_N^{\dagger} u_p^*(k_N, x, t) \right)$$
$$+ \int dk \left(b(k) u_n(k, t, x) + b^{\dagger}(k) u_n^*(k, t, x) \right).$$

 (note that the boundary conditions are imposed on the positive norm states)

The direct result is ____

$$E_0^{Kre}(a) = \int_0^a \langle \Omega | T_{00}^{Kre} | \Omega \rangle dx = -\frac{\pi}{24a},$$

And

$$F(a) = -\frac{\partial (E_0^{Kre}(a))}{\partial a} = -\frac{\pi}{24} \frac{1}{a^2}$$

M.V. Takook et. al , Phys. Lett. B 6, 40 (2006) 48

Casimir effect in a cylinder

Hilbert space Cal.s

For a 1+1 dimensional cylinder where the spatial line element points x and x+L are identified, and L is the periodicity length. Imposing the periodic boundary condition:

$$u_k(t,x) = u_k(t,x+nL)$$

$$u_k = \frac{1}{\sqrt{2L\omega}} e^{i(kx - \omega t)},$$

$$k = \frac{2\pi n}{L}, \ n = 0, \pm 1, \pm 2, \cdots$$

Within the usual calculation we have

$$\langle 0_L | T_{00} | 0_L \rangle = \frac{1}{2L} \sum_{n=-\infty}^{\infty} |k| = \frac{2\pi}{L^2} \sum_{n=0}^{\infty} n,$$

 which clearly results in an infinite vacuum energy, so we need to renormalize

$$< 0|T^{00}|0> := -\frac{\pi}{6L^2}$$

 N.D. Birrell and P.C.W. Davies, Cambridge University Press (1982) Quantum Fields in Curved Space, page 93

Let us see what happens if we use Krein space instead of Hillbert space:

$$\langle \Omega | T_{00}^{Krein} | \Omega \rangle = \Big(\frac{1}{L} \sum_{n=0}^{\infty} \frac{2\pi n}{L} - \frac{1}{2\pi} \int_0^{\infty} k \, dk \Big),$$

After using the Abel-Plana formula, and doing some calculations, one ontains:

$$\langle \Omega | T_{00}^{Krein} | \Omega \rangle = \frac{2\pi}{L^2} \Big(-\frac{1}{12} \Big) = -\frac{\pi}{6L^2},$$

This is exactly the same as other related works

M. Reza Tanhayi, et.al, "The casimir effect in Krein Space for cylinder, Torus and Sphere" in preparation

Conclusion:

- In our recent work, we used Krein space to calculate the Casimir effect of a sphere,
- we obtained the exact result.
- It seems that if one uses Krein space, some infinities will be disappeared, so...
- quantization procedure can be carried out in this way somehow easier

Thank you