Probing R-Parity Violating ~*l*₄ **Resonance at The LHC**

Orhan Çakır, <u>Sinan Kuday</u>, İ.Türk Çakır, S. Sultansoy <u>Ankara University Physics Department</u>

> Ankara YEF Günleri 27-30.12.2011

Outline

- 4th Generation Facts
- SUSY
- **R-Parity Violation**
- **RPV Production of** $\sim L_4$
- **RPV Production of** $\sim v_4$
- Searches at LHC
- Conclusion

4th Generation Facts

- SM cannot predict the number of families, their masses and mixing patterns for fermions.
- Bounds for number of families, $N \ge 3$ from LEP Data,

N < 9 from asymptotic freedom

- EW Precision Data Measurements <u>allow 4th SM families</u> for Higgs masses between 115 750 GeV and for **massive neutrinos**. For massless neutrinos, one can calculate the number of families as 3.
- Partial-wave unitarity leads to m_Q ≤ 700 GeV ≈ 4m_t and in general we expect m_t << m₄ << m₅.
- According to LEP results, there are only 3 *"light"* (2m_v < m_z) non -sterile neutrinos, whereas in the case of "5" SM families "4 light neutrinos" are expected.
- Fifth SM family is excluded at more than 5σ level by EW precision data.

4th Generation Facts

• In the SM, the masses and mixings of quarks arise from the Yukawa interactions with the Higgs condensate.

$$L_Y = -Y_{ij}^d \overline{Q}_{Li}^I \phi d_{Rj}^I - Y_{ij}^u \overline{Q}_{Li}^I \varepsilon \phi^* u_{Rj}^I + h.c.$$

- When Φ acquires a vev after Spontaneous Sym. Breaking, mass terms appear in above equation and physical mass states are obtained by diagonalizing $Y^{u,d}$ by four unitary matrices, $V_{L,R}^{u,d} \rightarrow M_{diag}^{f} = V_{L}^{f}Y^{f}(V_{R}^{f})^{\dagger}(v/\sqrt{2})$
- As a result, W^{\pm} interactions couple to physical u_{Lj} , d_{Lk} quarks with couplings given by $V_{CKM} \equiv V_L^u (V_L^d)^{\dagger}$ and we have the mass matrices.
- Note that since we have **Hierarchy problem in the SM**, we can not explain why fermions have so different mass values at the end **???**

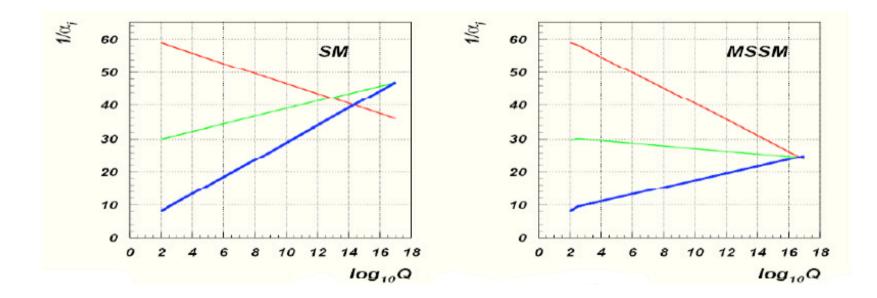
Quarks				Leptons			
Gen	Flavor	Charge	Mass $[MeV/c^2]$	Gen	Flavor	Charge	Mass $[MeV/c^2]$
I	Up (u)	+2/3	1.3 to 3.0	I	electron (e^-)	-1	0.511
í 1	$\operatorname{Down}(d)$	-1/3	3 to 7		electron neutrino (ν_e)	0	$<\!\!2 \times 10^{-6}$
II	Charm (c)	+2/3	$1.25 \pm 0.09 \times 10^{3}$	П	Muon (μ^{-})	-1	105.7
	Strange (s)	-1/3	95 ± 25		Muon neutrino (ν_{μ})	0	< 0.019
III	Top (t)	+2/3	$172.6 \pm 1.4 \times 10^{3}$	III	Tau (au^-)	-1	1777.0
	Bottom (b)	-1/3	$4.2 \pm 0.07 \times 10^{3}$		Tau neutrino $(\nu_{ au})$	-1	< 18.2

4th Generation Facts

- One way to overcome Hierarchy problem in the SM4 may be Flavour Democratic Approach.
- Flavour Democracy offers that SM masses are equal before Spontaneous Symmetry Breaking. (*)

 $m_{u_4} > 335 \text{ GeV } 95\% \text{ CL.}$ $m_{l_4} > 100 \text{ GeV}$ $m_{d_4} > 338 \text{ GeV } 95\% \text{ CL.}$ $m_{v_4} > 90 (80) \text{ for Dirac (Majorana)}$ 700 GeV (Partial Wave Unitarity)

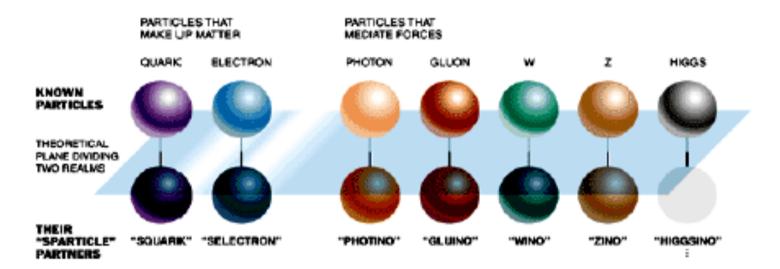
We can generalize 4th family case to SUSY in order to find RPV couplings of 4th family sfermions


(*) H.Fritches *et al.* Physics Letters B, Volume 237, Issue 3-4. S.Sultansoy *et al.* arxiv.org/abs/hep-ph/0610279.

SUSY

"Supersymmetry is a space-time symmetry which is defined by the transformations between fermion and boson states using an operator Q." (Martin F. Sohnius, 1985) $n_B = n_F$

$$Q|Fermion\rangle = |Boson\rangle$$
 $Q^{\dagger}|Boson\rangle = |Fermion\rangle$


 $\{Q, Q^{\dagger}\} \approx P^{\mu}$ $\{Q, Q\} = \{Q^{\dagger}, Q^{\dagger}\} = 0$ $[P^{\mu}, Q] = [P^{\mu}, Q^{\dagger}] = 0$

SUSY

supersymmetry

Photino, Zino and Neutral Higgsino: Neutralinos

Charged Wino, charged Higgsino: Charginos

Sparticle Pool

Names		spin 0	spin $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$egin{array}{ccc} (u_L & d_L) \end{array}$	$(\ {f 3},\ {f 2},{1\over 6})$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	$(\overline{f 3},{f 1},-{2\over3})$
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	$(\overline{3}, 1, \frac{1}{3})$
sleptons, leptons	L	$(\widetilde{ u} \ \widetilde{e}_L)$	$(u \ e_L)$	$({f 1}, {f 2}, -{1\over 2})$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)
Higgs, higgsinos	H_{u}	$\begin{pmatrix} H^+_u \ H^0_u \end{pmatrix}$	$(\widetilde{H}^+_u \ \ \widetilde{H}^0_u)$	$(1, 2, +rac{1}{2})$
	H_d	$\begin{pmatrix} H^0_d \ H^d \end{pmatrix}$	$({\widetilde H}^0_d \ \ {\widetilde H}^d)$	$({f 1}, {f 2}, -{1\over 2})$

Chiral supermultiplets

Names	spin $1/2$	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8, 1, 0)
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$	(1, 3, 0)
bino, B boson	\widetilde{B}^0	B^0	(1, 1, 0)

Gauge supermultiplets

MSSM Superpotential

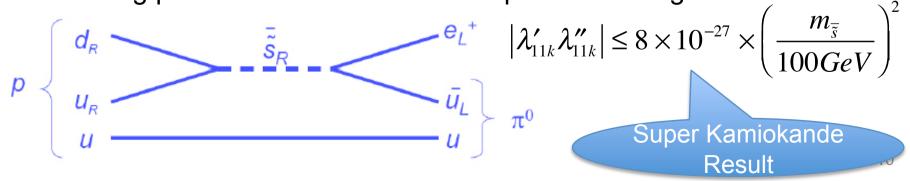
• **MSSM** extension of SM is specified by the superpotential choice of the form:

$$W_{\text{MSSM}} = \overline{u} \mathbf{y}_{\mathbf{u}} Q H_{u} - \overline{d} \mathbf{y}_{\mathbf{d}} Q H_{d} - \overline{e} \mathbf{y}_{\mathbf{e}} L H_{d} + \mu H_{u} H_{d} \,.$$

• However, one can find other gauge invariant and renormalizable terms which violate *L* and *B* numbers in the total superpotential, namely:

$$egin{array}{rcl} W_{\Delta {
m L}=1}&=&rac{1}{2}\lambda^{ijk}L_iL_j\overline{e}_k+\lambda^{\prime ijk}L_iQ_j\overline{d}_k+\mu^{\prime i}L_iH_u\ W_{\Delta {
m B}=1}&=&rac{1}{2}\lambda^{\prime\prime ijk}\overline{u}_i\overline{d}_j\overline{d}_k \end{array}$$

- *B* and *L* violating above processes have <u>never seen experimentally</u>.
 But we cannot forbid them since both of them are produced by **non- perturbative electroweak effects**.
- Non-perturbative electroweak effects are negligible at ordinary energies but may be relevant in the early universe.


•

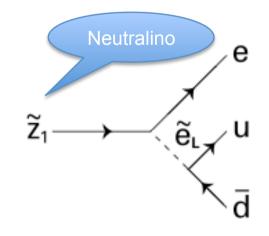
R-Parity Violation

• We can define S,B and L conservation together with **R-parity** as:

 $R = (-1)^{3(B-L)+2S}$ +1 for all matter particles (even R state) -1 for all sparticles (odd R state)

- If **B** or **L** number is violating at a vertex, it is a <u>matter violation</u> even if **R-parity** is conserving.
- Multiplication of particle R-states violates R-parity if multiplication is equal to -1 (odd).
- In the MSSM, R-parity violation can only come from R-odd, B and L -violating terms in the superpotential.
- On the other hand, proton should decay immediately via R-parity violating processes. A solution to this problem taking:

R-Parity Violation


If R-parity violating exists;

- 1. The lightest sparticle can not be stable and should decay into some SM particles.
- Decay products of all other sparticles must contain odd and even R states which can mix to form mass eigenstates. But we can assume one of the states are dominant.
- 3. Sparticles can be produced in pairs as well as **in resonances**.

$$\Gamma(\tilde{Z}_1 \to eu\bar{d}) \sim \frac{3\alpha \lambda_{111}^{\prime 2}}{128\pi^2} \frac{m_{\tilde{Z}_1}^5}{M_{SUSY}^4}$$

If we cannot observe in 1m long detector:

$$c.\gamma.\tau(\tilde{Z}_{1}) \leq 1 \quad LorentzFactor = \gamma = \frac{E_{\tilde{Z}_{1}}}{m_{\tilde{Z}_{1}}}$$
$$\lambda_{111}' > 1.4 \times 10^{-6} \sqrt{\gamma} \left(\frac{M_{SUSY}}{200 \, GeV}\right)^{2} \left(\frac{100 \, GeV}{m_{\tilde{Z}_{1}}}\right)^{5/2}$$

RPV-4 Model

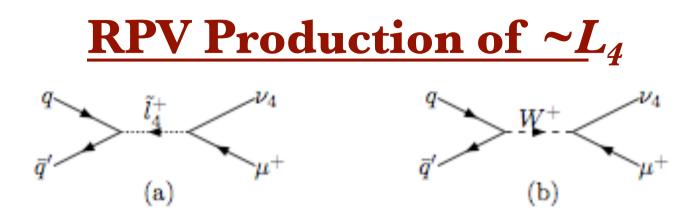
The RPV supersymmetric trilinear interaction terms for the charged fourth family slepton can be written as

$$L_{RPV} = \lambda_{i4k} \tilde{l}_{4L} \tilde{l}_{kR} \nu_{i} + \lambda_{ij4} \tilde{l}_{4R}^{*} \nu_{i}^{c} l_{jL} - \lambda_{4jk} \tilde{l}_{4L} \tilde{l}_{kR} \nu_{j} - \lambda_{ij4} \tilde{l}_{4R}^{*} \overline{\nu}_{j}^{c} l_{4L} - \lambda_{4jk}^{*} \tilde{l}_{4L} \overline{q}_{kR} q_{jL} + h.c.$$

$$M_{\tilde{l}_{4}}^{2} = \begin{pmatrix} m_{\tilde{l}_{4L}}^{2} & a_{l_{4}} m_{l_{4}} \\ a_{l_{4}} m_{l_{4}} & m_{\tilde{l}_{4R}}^{2} \end{pmatrix}$$

$$m_{\tilde{l}_{4R}}^{2} = M_{\tilde{l}_{4}}^{2} + m_{l_{4}}^{2} - m_{Z}^{2} \cos 2\beta (\frac{1}{2} - \sin^{2} \theta_{W})$$

$$m_{\tilde{l}_{4R}}^{2} = M_{\tilde{l}_{4}}^{2} + m_{l_{4}}^{2} - m_{Z}^{2} \cos 2\beta \sin^{2} \theta_{W}$$


$$a_{l_{4}} = A_{l_{4}} - \mu \tan \beta$$

$$(\tilde{l}_{4l}) = \begin{pmatrix} \cos \theta_{\tilde{l}_{4}} & \sin \theta_{\tilde{l}_{4}} \\ -\sin \theta_{\tilde{l}_{4}} & \cos \theta_{\tilde{l}_{4}} \end{pmatrix} \begin{pmatrix} \tilde{l}_{4L} \\ \tilde{l}_{4R} \end{pmatrix}$$

$$\cos \theta_{\tilde{l}_{4}} = \frac{-a_{l_{4}} m_{l_{4}}}{\sqrt{(m_{\tilde{l}_{4L}}^{2} - m_{\tilde{l}_{4}}^{2})^{2} + a_{l_{4}}^{2} m_{l_{4}}^{2}}}$$

$$m_{\tilde{l}_{4(l,h)}}^{2} = \frac{1}{2} (m_{\tilde{l}_{4L}}^{2} + m_{\tilde{l}_{4R}}^{2}) \mp \frac{1}{2} \sqrt{(m_{\tilde{l}_{4L}}^{2} - m_{\tilde{l}_{4R}}^{2})^{2} + 4a_{l_{4}}^{2} m_{l_{4}}^{2}}$$

$$12$$

- Resonant production of ~*l*₄ is possible via R-parity violating interactions of SUSY as shown in figure (a).
- Dominant background process will be resonant W⁺ production of SM4 as shown in figure (b).
- SUSY backgrounds (pair production of $\sim I_4$) will be negligibly low after applying P_T cuts for high-energetic jets.
- Allowed parameter space by PEW Data is large enough if we consider neutrinos as Majorana.

<u>RPV Production of \sim L_4</u>

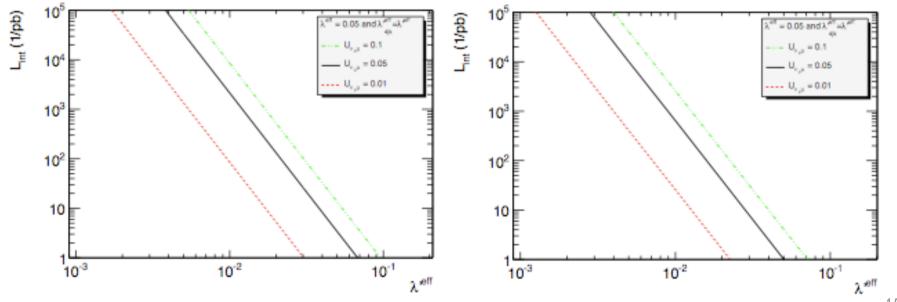
For Signal: "Process (a)" one can calculate partonic cross section as:

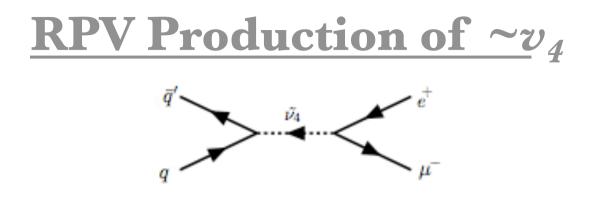
$$\hat{\sigma}_{part}(\hat{s}) = \sum_{jk} \frac{C_F(\lambda'_{4jk}^{eff} \lambda_{442}^{eff})^2 (\hat{s} - m_{\nu_4}^2)^2}{16\pi \hat{s}[(\hat{s} - m_{\tilde{l}_{4l}}^2)^2 + m_{\tilde{l}_{4l}}^2 \Gamma_{\tilde{l}_{4l}}^2)]} \quad where \ \lambda^{eff}(\lambda'^{eff}) = \cos\theta_{\tilde{l}_4} \lambda(\lambda') \\ m_{\nu_4} = 100 \ GeV, \ m_{\tilde{l}_4} = 300 \ GeV \\ C_F: \text{Color Factor}$$

In calculations of total cross section, we implemented interactions into CompHEP with CTEQ6M PDF data.

For Background: "Process (b)"

Cross section of SM4 background is proportional to $|U_{v4\mu}|^2$ Analysis of PMNS matrix elements showed that $|U_{v4\mu}| < 0.115$


0.016 pb for $\sqrt{s} = 7$ TeV 0.024 pb for $\sqrt{s} = 10$ TeV 0.035 pb for $\sqrt{s} = 14$ TeV


Calculated by CompHEP using $|U_{v4\mu}| = 0.05$

<u>RPV Production of ~*L*₄</u>

Achievable values of λ'^{eff} for 3σ observation and *L* vs. λ'^{eff} for 7, 14 TeV:

$ U_{ u_4\mu} $	$\sqrt{s}=7~{\rm TeV},~L_{int}=1fb^{-1}$	$\sqrt{s} = 10$ TeV, $L_{int} = 100 fb^{-1}$	$\sqrt{s} = 14 ~{\rm TeV}, L_{int} = 100 f b^{-1}$
0.1	0.017	0.0048	0.0040
0.05	0.010	0.0032	0.0028
0.01	0.0045	0.0015	0.0012

• For Signal: Partonic cross section;

C_F: Color Factor

$$\hat{\sigma}_{par}(\hat{s}) = \sum_{jk} \frac{C_F (\lambda'_{4jk} \lambda_{412})^2 \hat{s}^2}{16\pi \left[(\hat{s} - m_{\tilde{v}_4}^2)^2 + m_{\tilde{v}_4}^2 \Gamma_{\tilde{v}_4}^2 \right]} \qquad where \ m_{\tilde{v}_4} = 300 \ GeV$$
$$\lambda' = \lambda = 0.05$$

 We make "one coupling dominance assumption" which helps us in total cross section calculations using CTEQ6m PDF data with CompHEP-v4-5-1.

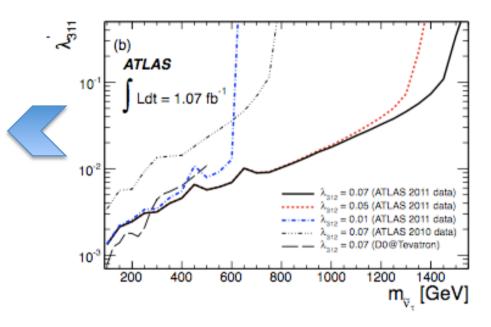
Events for <i>L=1 fb</i> ⁻¹	7 TeV	10 TeV	14 TeV
pp → sn4 → eµ	490	335	253

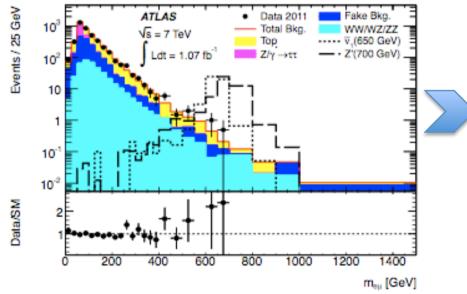
RPV Production of $\sim v_4$

 For Background: We estimated total SM background events which will contribute the *eµ* final state for the total integrated luminosity 1 fb⁻¹

Process	$\sqrt{s} = 7 \ TeV$	$\sqrt{s} = 10 \ TeV$	$\sqrt{s} = 14 \ TeV$
tt	1324	3120	6860
$Z_{\gamma} \rightarrow \tau \tau$	788	1194	1574
W^+W^-	356	628	920
SingleT	120	160	348
WZ	39	65	102
ZZ	5	8	13
Total Background	2632	5175	9817

Simulation tools like CompHEP, Pythia, Hathor, Jimmy, Herwig, PowHEG are useful to cross check above results.


<u>RPV Production of \sim v_4</u>


• Achievable values of $\lambda'_{4 jk}$ for 3σ observation:

λ	7 TeV, L _{int} =1 fb ⁻¹	10 TeV, L _{int} =100 fb ⁻¹	14 TeV, L _{int} =100 fb ⁻¹
0,1	0,015	1,2x10 ⁻³	9x10 ⁻⁴
0.05	0.03	2,5x10 ⁻³	1,5x10 ⁻³
0.01	0.13	0,014	0.011

Searches at LHC

The 95% C.L. upper limits on the λ'_{311} Coupling as a function of m[~]_{vT} for three values of λ_{312} . The regions above the three curves represent ranges of λ'_{311} values that are excluded. (*)

Observed and predicted eµ invariant mass distributions. The couplings taken as $\lambda'_{311} = 0.1$ and $\lambda_{312} = 0.05$. The ratio plot at the bottom includes statistical uncertainties. (*)

* ATLAS Collaboration, arxiv.org/abs/hep-ph/1109.3089v1

Conclusion

- We have studied the resonance production of sleptons through R-parity violating couplings at LHC energies. This could be the first manifestation of 4th family for SUSY.
- One can see that LHC has a potential to exclude R-parity couplings about the order of 10⁻⁴. Here we present the exact values of λ_{412} and λ'_{4jk} with respect the LHC energies and luminosities.
- R-parity violating terms are relevant at high energies and luminosities so that they are important to understand early universe.