Mezon Baryon Etkileşme Sabitleri, Simetriler vert QCD Toplam Kuralları

A. Özpineci

ODTÜ Fizik Bölümü ozpineci@metu.edu.tr

30 Mayıs 2009

ヘロト 人間 ト ヘヨト ヘヨト

Sunum Taslağı

- QCD ve Hadronlar
- QCD'nin Simetrileri
- Eşleşme Sabitleri
- Hadronlarda Karışma
- 2 QCD Toplam Kuralları ve Eşleşme Sabitleri
 - İlişkilendirme fonksiyonları arasındaki bağıntılar

▲□→ ▲ 三→ ▲ 三→

QCD ve Hadronlar QCD'nin Simetrileri Eşleşme Sabitleri Hadronlarda Karışma

- Cevabını aradığımız bazı soruların cevapları eskişimdiki fizikte olabilir.
- "WMAP Haze: Directly Observing Dark Matter?" Michael McNeil Forbes (Washington U., Seattle), Ariel R. Zhitnitsky (British Columbia U.). NT@UW-08-05, Feb 2008. 13pp.

Published in Phys.Rev.D78:083505,2008.

e-Print: arXiv:0802.3830 [astro-ph]

イロト イポト イヨト イヨト

QCD ve Hadronlar QCD'nin Simetrileri Eşleşme Sabitleri Hadronlarda Karışma

Outline

- QCD ve Hadronlar
- QCD'nin Simetrileri
- Eşleşme Sabitleri
- Hadronlarda Karışma
- QCD Toplam Kuralları ve Eşleşme Sabitleri
 İlişkilendirme fonksiyonları arasındaki bağıntılar

3 Sonuçlar

イロト イポト イヨト イヨト

- Hadronlar'ı oluşturan kuarkların etkileşmelerini açıklayan QCD 40 yıldan fazladır aramızda.
- QCD hala tam anlaşılmış değil
- QCD kuarkların hadronların içinda hapsolmasını öngörür mü, öngörmez mi? Henüz bilmiyoruz
- Düşük enerjilerde, QCD eşleşme sabiti büyük değerler alır, dolayısı ile tedirgeme kuramını kullanamayız.
- Tedirgemeye dayanmayan bir yönteme ve/veya simetrileri kullanarak gözlemlenebilirler arasında ilişkiler bulmaya ihtiyaç duyarız

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

QCD ve Hadronlar QCD'nin Simetrileri Eşleşme Sabitleri Hadronlarda Karışma

Outline

- QCD ve Hadronlar
- QCD'nin Simetrileri
- Eşleşme Sabitleri
- Hadronlarda Karışma
- QCD Toplam Kuralları ve Eşleşme Sabitleri
 İlişkilendirme fonksiyonları arasındaki bağıntılar

3 Sonuçlar

イロト イポト イヨト イヨト

QCD ve Hadronlar QCD'nin Simetrileri Eşleşme Sabitleri Hadronlarda Karışma

QCD'nin Simetrileri

• QCD Lagranj Yoğunluğu:

$$\mathcal{L}=-rac{1}{4}G^a_{\mu
u}G^{a\mu
u}+\sum_qar{q}_L\,\,\mathcal{D}q_L+\sum_qar{q}_R\,\,\mathcal{D}q_R+\sum_q m_q(ar{q}_Lq_R+ar{q}_Rq_L)$$

• Eğer kuarklar kütlesiz olsalardı $m_q = 0$, (q = u, d, s) QCD Lagranj yoğunluğunun global

$$\begin{array}{rcl} U(3)_L \otimes U(3)_R &=& SU(3)_L \otimes SU(3)_R \otimes U(1)_L \otimes U(1)_R \\ &=& SU(3)_V \otimes SU(3)_A \otimes U(1)_V \otimes U(1)_A \end{array}$$

simetrisi olacaktı.

$$egin{aligned} q_L &
ightarrow e^{ilpha_L} q_L \ q_R &
ightarrow e^{ilpha_R} q_R \end{aligned}$$

イロト イポト イヨト イヨト 一座

- SU(3)_A simetrisi doğada kendiliğinden bozulur. Ortaya çıkan Goldstone bozonları 0⁻ pionlar, kaonlar ve η parçacığıdır.
- SU(3)_V simetrisi ise doğada kendini (yaklaşık olarak) gösterir.
- U(1)_A simetrisi anomali içeren bir simetridir, yani kuantum teorisinin gerçek bir simetrisi değildir.
- U(1)_V simetrisi toplam baryon sayısının korunumuna karşılık gelir.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

QCD ve Hadronlar QCD'nin Simetrileri Eşleşme Sabitleri Hadronlarda Karışma

- Kuark kütleleri SU(3)_A simetrisini açık olarak kırarlar, dolayısı ile Goldstone bozonları kütlesiz değil küçük kütlelidir. (kütleleri kuarkların kütlesi ile orantılıdır)
- SU(3)_V simetrisini ise kuark kütleleri değil, kütle farkları açık olarak kırarlar.
- Kütle farklarını ihmal edersek, kütleler sıfırdan farklı bile olsa SU(3)_V simetrimiz vardır.

(ロ) (同) (三) (三) (三) (○)

- Doğada, *u* ve *d* kuarkın kütleleri çok küçüktür. $m_{u,d}/\Lambda_{QCD} < 0.1$
- s kuarkın kütlesi ise daha büyüktür m_s/Λ_{QCD} ~ 1, ancak yine de baryonların kütlelerine oranla oldukça küçüktür.
- Kuark kütleleri arasındaki fark ise daha küçüktür.
- $SU(3) \rightarrow SU(2) \otimes U(1)$
 - SU(2) izospin simetrisi
 - U(1): Acayiplik kuantum sayısının korunumu

<ロ> (四) (四) (注) (注) (注) (三)

QCD ve Hadronlar QCD'nin Simetrileri Eşleşme Sabitleri Hadronlarda Karışma

Outline

- QCD ve Hadronlar
- QCD'nin Simetrileri
- Eşleşme Sabitleri
- Hadronlarda Karışma
- QCD Toplam Kuralları ve Eşleşme Sabitleri
 İlişkilendirme fonksiyonları arasındaki bağıntılar

イロト イポト イヨト イヨト

QCD ve Hadronlar QCD'nin Simetrileri Eşleşme Sabitleri Hadronlarda Karışma

Eşleşme Sabitleri

- Simetriler, Hamilton'un öz durumlarını (yani gözlemlediğimiz parçacıkları), simetri dönüşümleri arasında birbirine dönüşen durumlardan oluşan guruplara/çoklulara ayırırlar ve eşleşme sabitleri arasında bağıntılar öngörürler
- 3 kuarktan oluşan çoklular:

$$\mathbf{3}\otimes\mathbf{3}\otimes\mathbf{3}=\mathbf{10}\oplus\mathbf{8}\oplus\mathbf{8}\oplus\mathbf{1}$$

ve bir kuark ile bir anti-kuarktan oluşan çoklular

$$\mathbf{3}\otimes \mathbf{\bar{3}} = \mathbf{1}\oplus \mathbf{8}$$

olarak indirgenemez çoklularına ayrılabilir.

ヘロト 人間ト 人団ト 人団ト

- 8liler, T^{α}_{β} şeklinde, rank iki bir tensor (matriks) şeklinde gösterilebilir.
- B^{α}_{β} baryon okteti, M^{α}_{β} mezon okteti göstersin
- SU(3) simetrisi olan bir Lagranj yoğunluğu yazmak icin, $\bar{B}^{\alpha}_{\beta}, B^{\gamma}_{\delta}, M^{\eta}_{\omega}$ faktörlerini bir her aşağı indekse, bir yukarı indeks gelecek şekilde çarpmalıyız:

$$\mathcal{L} \propto (D+F)\bar{B}^{\alpha}_{\beta}B^{\beta}_{\delta}M^{\delta}_{\alpha} + (D-F)\bar{B}^{\alpha}_{\beta}B^{\delta}_{\alpha}M^{\alpha}_{\delta} = FTr\bar{B}[B,M] + DTr\bar{B}\{B,M\}$$

- Bütün eşleşme sabitleri, iki parametre cinsinden yazılır.
- $\mathcal{L} \rightarrow \mathcal{L} + M_1 \operatorname{Tr} \overline{B} B$. (M_1 , 1lideki mezon)

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

QCD ve Hadronlar QCD'nin Simetrileri Eşleşme Sabitleri Hadronlarda Karışma

Outline

- QCD ve Hadronlar
- QCD'nin Simetrileri
- Eşleşme Sabitleri
- Hadronlarda Karışma
- QCD Toplam Kuralları ve Eşleşme Sabitleri
 İlişkilendirme fonksiyonları arasındaki bağıntılar

3 Sonuçlar

イロト イポト イヨト イヨト

- *SU*(3) simetrisi kırılmış bir simetri.
- Aynı korunan kuantum sayılarına ait durumlar, kendiliğinden birbirine dönüşebilir.
- Kütle özdurumları, bu durumların lineer birleşimidir. Örn: ν karışımı
- SU(3) simterisi kütle farkları tarafından bozulmuştur, yine de QCD çeşni kuantum sayısını korur.

くロト (過) (目) (日)

QCD ve Hadronlar QCD'nin Simetrileri Eşleşme Sabitleri Hadronlarda Karışma

- $\pi^0(\rho^0) = (\bar{u}u \bar{d}d)/\sqrt{2}, \eta_8(\omega_8) = (\bar{u}u + \bar{d}d 2\bar{s}s)/\sqrt{6}$ ve $\eta_1(\omega_1) = (\bar{u}u + \bar{d}d + \bar{s}s)/\sqrt{3}$ aynı çeşni kuantum sayısına sahiptir.
- Hiç bir korunan kuantum sayısı, bu mezonları birbirinden ayırmaz.
- $m_u m_d$ ihmal edilir ise, izospin kuantum sayısı $\pi^0(\rho^0)$ durumunun diğerleri ile karışmasını engeller.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Fiziksel η(ω) ile η'(φ), η₈(ω₈) ile η₁(ω₁)'in karışımından oluşmuştur:

$$\begin{aligned} \eta(\omega) &= \cos \theta_{\eta(\omega)} \eta_8 + \sin \theta_{\eta(\omega)} \eta_1 \\ \eta'(\phi) &= -\sin \theta_{\eta(\omega)} \eta_8 + \cos \theta_{\eta(\omega)} \eta_1 \end{aligned}$$

Deneysel olarak

$$\eta\simeqrac{1}{\sqrt{6}}(ar{u}u+ar{d}d-2ar{s}s)\ ,\ \ \eta'\simeqrac{1}{\sqrt{3}}(ar{u}u+ar{d}d+ar{s}s)$$

ve

$$ho^0 \simeq rac{1}{\sqrt{2}}(ar{u}u+ar{d}d), \ \phi\simeqar{s}s$$

QCD ve Hadronlar QCD'nin Simetrileri Eşleşme Sabitleri Hadronlarda Karışma

Baryon oktet:

$$\mathcal{B}^{lpha}_{eta}=\left(egin{array}{ccc} rac{1}{\sqrt{2}}\Sigma^0+rac{1}{\sqrt{6}}\Lambda & \Sigma^+ & p\ \Sigma^- & -rac{1}{\sqrt{2}}\Sigma^0+rac{1}{\sqrt{6}}\Lambda & n\ \Xi^- & \Xi^0 & -rac{2}{\sqrt{6}}\Lambda \end{array}
ight)$$

• (Sankiskalar) Mezon oktet:

$$P^{\alpha}_{\beta} = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

ve tekli(singlet) η'

QCD Toplam Kuralları ve Eşleşme Sabitleri

- SU(3)_f simetri yok ise, eşleşme sabitleri arasında ne gibi ilişkiler olabilir?
- QCD toplam kurallarında incelediğimiz ilişkilendirme fonksiyonu:

$$\begin{split} \Pi &= \int d^4 x e^{i p x} \langle \mathcal{M}(q) | \mathcal{T} \eta_{B_1}(x) \bar{\eta}_{B_2}(0) | 0 \rangle \\ &= \sum_{h_1, h_2} \frac{\langle 0 | \eta_{B_1} | h_1(p) \rangle}{p^2 - m_{h_1}^2} \langle \mathcal{M} h_1(p) | h_2(p+q) \rangle \frac{\langle h_2(p+q) | \eta_{B_2} | 0 \rangle}{(p+q)^2 - m_{h_2}^2} \end{split}$$

• η_B operatörlerini seçerken SU(3) simetriyi kullanabiliriz.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

۲

$$\begin{split} \eta^{\Sigma^{0}} &= \sqrt{\frac{1}{2}} \epsilon^{abc} \left[\left(u^{aT} C s^{b} \right) \gamma_{5} d^{c} + t \left(u^{aT} C \gamma_{5} s^{b} \right) d^{c} \right. \\ &+ \left(d^{aT} C s^{b} \right) \gamma_{5} u^{c} + t \left(d^{aT} C \gamma_{5} s^{b} \right) u^{c} \right] \\ \eta^{\Sigma^{+}} &= -\frac{1}{\sqrt{2}} \eta^{\Sigma^{0}} (d \rightarrow u) , \qquad \eta^{\Sigma^{-}} = \frac{1}{\sqrt{2}} \eta^{\Sigma^{0}} (u \rightarrow d) \\ \eta^{p} &= \eta^{\Sigma^{+}} (s \rightarrow d) , \qquad \eta^{n} = \eta^{\Sigma^{-}} (s \rightarrow u) \\ \eta^{\Xi^{0}} &= \eta^{n} (d \rightarrow s) , \qquad \eta^{\Xi^{-}} = \eta^{p} (u \rightarrow s) \end{split}$$

ve

$$\begin{array}{rcl} 2\eta_{\Sigma^0}(\textbf{\textit{d}}\leftrightarrow\textbf{\textit{s}})+\eta_{\Sigma^0} &=& -\sqrt{3}\eta_{\Lambda}\\ 2\eta_{\Sigma^0}(\textbf{\textit{u}}\leftrightarrow\textbf{\textit{s}})-\eta_{\Sigma^0} &=& -\sqrt{3}\eta_{\Lambda} \end{array}$$

İlişkilendirme fonksiyonları arasındaki bağıntılar

Outline

- QCD ve Hadronlar
- QCD'nin Simetrileri
- Eşleşme Sabitleri
- Hadronlarda Karışma
- QCD Toplam Kuralları ve Eşleşme Sabitleri
 İlişkilendirme fonksiyonları arasındaki bağıntılar

3 Sonuçlar

イロト イポト イヨト イヨト

- Tanımlar: $\pi^0 = g_{\pi u u} \bar{u} u + g_{\pi d d} \bar{d} d + g_{\pi s s} \bar{s} s$
- $\Pi^{B_2 \to B_1 \mathcal{M}} = \langle \mathcal{M} | B_1 \bar{B}_2 | 0 \rangle$ olarak gösterelim
- O zaman:

$$\Pi^{\Sigma^0 o \Sigma^0 \pi^0} = g_{\pi u u} \langle ar{u} u | \Sigma^0 ar{\Sigma}^0 | 0
angle + g_{\pi d d} \langle ar{d} d | \Sigma^0 ar{\Sigma}^0 | 0
angle + g_{\pi s s} \langle ar{s} s | \Sigma^0 ar{\Sigma}^0 | 0
angle$$

- $\Pi_1(u, d, s) = \langle \bar{u}u | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle, \ \Pi_2(u, d, s) = \langle \bar{s}s | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle$ olarak tanımlansın
- Π₁, dikuarkla etkileşmeyi, Π₂ ise, tek kuarkla olan etkileşmeyi tanımlar.
- $\Sigma^{0}(u \leftrightarrow d) = \Sigma^{0}$ olduğundan dolayı $\langle \bar{d}d | \Sigma^{0} \bar{\Sigma}^{0} | 0 \rangle = \Pi_{1}(d, u, s)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

• Örn:
$$\Pi^{\Sigma^+ \to \Sigma^+ \pi^0} = g_{\pi \bar{u} u} \langle \bar{u} u | \Sigma^+ \bar{\Sigma}^+ | 0 \rangle + g_{\pi \bar{s} s} \langle \bar{s} s | \Sigma^+ \bar{\Sigma}^+ | 0 \rangle$$

• $\Sigma^0 (d \to u) = -\sqrt{2} \Sigma^+$
• Dolayısı ile $\langle \bar{u} u | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle (d \to u) = 2 \langle \bar{u} u | \Sigma^+ \bar{\Sigma}^+ | 0 \rangle'$
• $\langle \bar{u} u | \Sigma^+ \bar{\Sigma}^+ | 0 \rangle = 4 \langle \bar{u} u | \Sigma^+ \bar{\Sigma}^+ | 0 \rangle' = 2 \langle \bar{u} u | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle (d \to u) = 2 \langle \bar{u} u | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle$

• Sonuç olarak:
$$\Pi^{\Sigma^+ \to \Sigma^+ \pi^0} = \sqrt{2} \Pi_1(u, u, s)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

İlişkilendirme fonksiyonları arasındaki bağıntılar

• Yüklü mezonlar: $\Pi^{\Sigma^0 \to \Sigma^+ \pi^-}$

- Doğal olarak $\langle \bar{d}d | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle$ ile $\langle \bar{u}d | \Sigma^+ \bar{\Sigma}^0 | 0 \rangle$ birbirine orantılı olmasını bekleriz.
- Gerçekten de $\Pi^{\Sigma^0 \to \Sigma^+ \pi^-} = \langle \bar{u}d | \Sigma^+ \bar{\Sigma}^0 | 0 \rangle = -\sqrt{2} \langle \bar{d}d | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle = -\sqrt{2} \Pi_1(d, u, s)$
- u ve d kuarklari yer değiştirerek, $\Pi^{\Sigma^0 \to \Sigma^- \pi^+} = \langle \bar{d}u | \Sigma^- \bar{\Sigma}^0 | 0 \rangle = \sqrt{2} \Pi_1(u, d, s)$ ifadesini de elde ederiz.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- Ya Λ içeren eşleşme sabitleri?
- $2\Sigma^{0}(d \leftrightarrow s) = -\sqrt{3}\Lambda \Sigma^{0}$ ve $\Pi^{\Sigma^{0} \rightarrow \Sigma^{-}\pi^{+}} = \sqrt{2}\Pi_{1}(u, d, s)$, eşitliklerini kullanarak $2\sqrt{2}\Pi_{1}(u, s, d) = \sqrt{3}\Pi^{\Lambda \rightarrow \Xi^{-}K^{+}} + \Pi^{\Sigma^{0} \rightarrow \Xi^{-}K^{+}}$ olduğunu görürüz.
- İki yeni fonksiyona ihtiyac duyulur: $\Pi_{3}(u, d, s) = -\Pi^{\Sigma^{0} \to \Xi^{-} K^{+}} = -\langle \bar{s}u | \Xi^{-} \bar{\Sigma}^{0} | 0 \rangle$ $\Pi_{4}(u, d, s) = -\Pi^{\Xi^{-} \to \Sigma^{0} K^{-}} = -\langle \bar{u}s | \Sigma^{0} \bar{\Xi}^{-} | 0 \rangle$
- $\Pi_3(u, d, s) = \Pi_4(u, s, d)$
- SU(3) limitinde $\Pi_1 \propto \sqrt{2}F$, $\Pi_2 \propto \sqrt{2}(F D)$, and $\Pi_4 = \Pi_3 \propto -(F + D)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Kanal	Gen. Akım	<i>t</i> = -1	SU(3) _f	QSR*	QSR [†]	Exp.
$\Lambda \rightarrow nK$	-13 ± 3	-9.5 ± 1	-13.6	-2.37	-2.49	-13.5
$\Lambda \rightarrow \Sigma^{+} \pi^{-}$	10 ± 3	12 ± 1	9.58			
$\Lambda \rightarrow \Xi^0 K^0$	4.5 ± 2	-2.5 ± 0.5	4.04			
$n \rightarrow p \pi^-$	21 ± 4	20 ± 2	18.95			21.2
$n \rightarrow \Sigma^0 K^0$	-3.2 ± 2.2	-9.5 ± 0.5	-3.2	-0.025	-0.40	-4.25
$p \rightarrow \Lambda K^+$	-13 ± 3	-10 ± 1	-13.6	-2.37	-2.49	-13.5
$ ho ightarrow ho \pi^0$	14 ± 4	15 ± 1	13.4	13.5		14.9
$ ho ightarrow \Sigma^+ K^0$	4 ± 3	14 ± 1	4.52			
$\Sigma^0 \rightarrow n K^0$	-4 ± 3	-9.5 ± 1	-3.2	-0.025	-0.40	-4.25
$\Sigma^0 \rightarrow \Lambda \pi^0$	11 ± 3	12 ± 1.5	9.58	6.9		
$\Sigma^0 \rightarrow \Xi^0 K^0$	-13 ± 3	-13.5 ± 1	-13.4			
$\Sigma^- \rightarrow nK^-$	5 ± 3	15 ± 2	-3.2			
$\Sigma^+ \rightarrow \Lambda \pi^+$	10 ± 3.5	12.5 ± 1	9.58			
$\Sigma^+ \rightarrow \Sigma^0 \pi^+$	-9 ± 2	-7.5 ± 0.7	-10.2	-11.9		
$\Xi^0 \rightarrow \Lambda K^0$	4.5 ± 1	-2.6 ± 0.3	4.04			
$\Xi^0 \rightarrow \Sigma^0 K^0$	-12.5 ± 3	-13.5 ± 1	-13.4			
$\Xi^0 \rightarrow \Sigma^+ K^-$	18 ± 4	19 ± 2	18.95			
$\Xi^0 \rightarrow \Xi^0 \pi^0$	10 ± 2	0.3 ± 0.6	-3.2	-1.60		

くりょう 小田 マイボット 山下 シックション

DCD

QCD Toplam Kuralları ve Eşleşme Sabitleri

Sonuçlar

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	channel	General current		Ioffe current		OSP [4]	OGD [F]	OSD [6]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J_1	Result	$SU(3)_f$	Result	$SU(3)_f$	Q3n [4]	Q3n [5]	Q3n [0]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{p \to p \rho^0}$	$-2.5{\pm}1.1$	-1.7	$-5.9{\pm}1.3$	-6.4	2.5 ± 0.2	2.4 ± 0.6	3.2 ± 0.9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{p \to p \omega}$	$-8.9{\pm}1.5$	-10.3	$-8.2{\pm}0.4$	-9.6	18 ± 8	7.2 ± 1.8	—	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_1^{\Xi^0 \rightarrow \Xi^0 \rho^0}$	$-4.2{\pm}2.1$	-4.3	$-2.0 {\pm} 0.2$	-1.6	—	2.4 ± 0.6	1.5 ± 1.1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_1^{\Sigma^0 \to \Lambda \rho^0}$	$1.9{\pm}0.7$	1.5	$-3.0{\pm}0.5$	-2.8	—	_	—	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{\Lambda \to \Sigma^+ \rho^-}$	$1.9{\pm}0.7$	1.5	$-2.8{\pm}0.6$	-2.8	—	_	—	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_1^{\Sigma^+ \to \Sigma^0 \rho^+}$	$7.2 {\pm} 1.2$	6.0	$8.5{\pm}0.8$	8.0	—	_	—	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{\Sigma^+ \to \Lambda \rho^+}$	$2.0{\pm}0.6$	1.5	$-2.8{\pm}0.6$	-2.8	—	_	—	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{p \to \Lambda K^{*+}}$	$5.1 {\pm} 1.8$	4.4	$7.4 {\pm} 0.8$	8.3	—	_	—	l
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{\Sigma^- \to nK^{*-}}$	$6.6{\pm}1.8$	6.1	$1.7{\pm}0.4$	2.3	—	_	—	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{\Xi^0\to\Sigma^+K^{*-}}$	$-2.3{\pm}1.7$	-2.4	$-10.0{\pm}1.8$	-9.1	—	_	—	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{\Xi^- \to \Lambda K^{*-}}$	$-5.9{\pm}0.7$	-5.8	$-6.2 {\pm} 0.4$	-5.5	—	_	—	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{\Sigma^0\to \Xi^0 K^{*0}}$	$1.6{\pm}1.0$	1.7	$7.1 {\pm} 1.3$	6.4	—	_	—	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{\Lambda \to \Xi^0 K^{*0}}$	$-6.0{\pm}0.7$	-5.9	$-6.2{\pm}0.2$	-5.5	—	_	—	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{n\to \Sigma^0 K^{*0}}$	$-4.0{\pm}0.7$	-4.3	$-1.5 {\pm} 0.3$	-1.6			—	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_1^{\Lambda\to\Lambda\omega}$	$-7.1{\pm}1.1$	-7.7	$-4.8 {\pm} 0.2$	-4.8	—	4.8 ± 1.2	—	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_1^{\Xi^0 \to \Xi^0 \phi}$	$-9.5{\pm}2.5$	-8.5	$-13.5{\pm}1.6$	-11.3	_	_		
$f_1^{\Sigma^0 \to \Sigma^0 \phi}$ -6.0 ± 0.8 -6.1 -0.25 ± 0.50 -2.3 $ -$	$f_1^{\Lambda \to \Lambda \phi}$	$-5.3{\pm}1.5$	-3.6	$-8.0{\pm}1.0$	-6.8	_	_	_	1
	$f_1^{\Sigma^0 \to \Sigma^0 \phi}$	$-6.0{\pm}0.8$	-6.1	$-0.25{\pm}0.50$	-2.3		_		

A. Özpineci

Mezon Baryon Etkileşme Sabitleri, Simetriler vert QCD Toplam Ku

$(f_1 + f_2)$ channel	General current		Ioffe current		000 [4]	OCD [1]	OCD [6]
	Result	$SU(3)_f$	Result	$SU(3)_f$	Qon [4]	Qon [5]	QSR [0]
$(f_1 + f_2)^{p \to p \rho^0}$	$19.7{\pm}2.8$	21.4	22.7 ± 1.3	24.7	21.6 ± 6.6	10.1 ± 3.7	36.8 ± 13
$(f_1 + f_2)^{p \to p\omega}$	$14.5{\pm}2.6$	15.0	$21.2{\pm}1.2$	25.7	32.4 ± 14.4	5.0 ± 1.2	_
$(f_1 + f_2)^{\Xi^0 \to \Xi^0 \rho^0}$	$-2.8{\pm}1.6$	-3.2	$-0.24{\pm}0.24$	0.5		-3.6 ± 1.6	-5.3 ± 3.3
$(f_1 + f_2)^{\Sigma^0 \to \Lambda \rho^0}$	$13.8{\pm}2.7$	14.2	$15.1{\pm}0.9$	14.0		_	—
$(f_1 + f_2)^{\Lambda \rightarrow \Sigma^+ \rho^-}$	$14.3 {\pm} 2.9$	14.2	$15.1{\pm}0.8$	14.0		_	—
$(f_1 + f_2)^{\Sigma^+ \rightarrow \Sigma^0 \rho^+}$	$-17.8{\pm}2.2$	-18.2	$-27.9{\pm}1.8$	-25.2		7.1 ± 1.0	53.5 ± 19
$(f_1 + f_2)^{\Sigma^+ \rightarrow \Lambda \rho^+}$	$14.3 {\pm} 2.9$	14.2	$15.1{\pm}0.8$	14.0	_	_	_
$(f_1 + f_2)^{p \rightarrow \Lambda K^{*+}}$	$-22.9 {\pm} 4.2$	-22.9	$-27.3 {\pm} 1.5$	-28.8		_	_
$(f_1+f_2)^{\Sigma^-\to nK^{*-}}$	$3.8{\pm}2.8$	4.5	$-0.79 {\pm} 0.05$	-0.7		_	—
$(f_1 + f_2)^{\Xi^0 \to \Sigma^+ K^{*-}}$	$33.8{\pm}4.9$	30.3	$41.3 {\pm} 2.4$	34.9	_	_	_
$(f_1+f_2)^{\Xi^-\to\Lambda K^{*-}}$	$11.6{\pm}2.9$	8.7	$17.9 {\pm} 1.0$	14.8		_	—
$(f_1 + f_2)^{\Sigma^0 \to \Xi^0 K^{*0}}$	$-24.6{\pm}4.8$	-21.4	$-29.2{\pm}1.7$	-24.7	_	_	_
$(f_1 + f_2)^{\Lambda \to \Xi^0 K^{*0}}$	$11.1 {\pm} 2.6$	8.7	$15.0 {\pm} 1.0$	14.8		_	_
$(f_1 + f_2)^{n \to \Sigma^0 K^{*0}}$	$-2.8{\pm}1.8$	-3.2	$0.56{\pm}0.04$	0.5		_	—
$(f_1 + f_2)^{\Lambda \to \Lambda \omega}$	$1.6{\pm}0.6$	1.8	$7.1 {\pm} 0.5$	9.1	_	-5.7 ± 1.0	_
$(f_1 + f_2)^{\Xi^0 \rightarrow \Xi^0 \phi}$	$22.8 {\pm} 6.4$	25.7	$37.7 {\pm} 2.5$	35.6	—	—	—
$(f_1 + f_2)^{\Lambda \to \Lambda \phi}$	$19.3 {\pm} 5.0$	18.7	$22.0{\pm}1.4$	23.5	—	—	—
$(f_1 + f_2)^{\Sigma^0 \to \Sigma^0 \phi}$	$-3.5{\pm}2.5$	4.5	$0.81{\pm}0.05$	0.7			_

くりょう 小田 マイボット 山下 シックション

TEŞEKKÜR EDERİM....

A. Özpineci Mezon Baryon Etkileşme Sabitleri, Simetriler vert QCD Toplam Ku

<ロト <回 > < 注 > < 注 > 、