$\begin{array}{l} \text{Introduction}\\ B_q \to D_q^* \ell \nu \text{ transitions}\\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \text{ transition form factors}\\ \text{Numerical Analysis} \end{array}$

Semileptonic $B_q \rightarrow D_q^* l \nu$ (q = s, d, u) Decays in QCD Sum Rules

M. Bayar

Physics Department Kocaeli University

May 30, 2009

◆ロ▶ ◆□▶ ◆三▶ ◆三▶ ● ○○へ⊙

 $\begin{array}{l} \text{Introduction}\\ B_q \to D_q^* \ell \nu \text{ transitions}\\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \text{ transition form factors}\\ \text{Numerical Analysis} \end{array}$

Outline

- 2 $B_q \rightarrow D_q^* \ell \nu$ transitions
- 3 Sum rules for the $B_q
 ightarrow D_q^* \ell
 u$ transition form factors
 - Phenomenological Part
 - Theoretical Part

4 Numerical Analysis

- Form Factors
- Heavy Quark Effective Theory (HQET)
- Branching Ratio

< 日 > < 同 > < 回 > < 回 > < □ > <

 $\begin{array}{c} {\rm Introduction}\\ B_q \to D_q^* \ell \nu \ {\rm transitions}\\ {\rm Sum \ rules \ for \ the \ } B_q \to D_q^* \ell \nu \ {\rm transition \ form \ factors}\\ {\rm Numerical \ Analysis} \end{array}$

•
$$B_q(J^P=0^-) \ o \ \overline{b}q$$

•
$$D^*_q(J^P=1^-) \ o \ \overline{c}q$$

- Yields useful information for understanding the structure of the D^{*}_s meson.
- These decays provide possibility to calculate the elements of the CKM matrix and leptonic decay constants.
- Among the b decays, $b \rightarrow c$ transition is the most dominant transition.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{array}{c} {\rm Introduction}\\ B_q \to D_q^* \ell \nu \ {\rm transitions}\\ {\rm Sum \ rules \ for \ the \ } B_q \to D_q^* \ell \nu \ {\rm transition \ form \ factors}\\ {\rm Numerical \ Analysis} \end{array}$

- A. A. Ovchinnikov and V. A. Slobodenyuk (1989)
 Form factors and decay widths at q² = 0 (B → D(D^{*}))
- V. N. Baier and A. G. Grozin (1990)
 Form factors of the B → D
- P. Ball (1992) Calculation of the V_{cb} analysing $B \rightarrow D(D^*)e\nu$
- M. Neubert (1994)
 Form factors in HQET using the subleading Isgur-Wise form factors and 1/m_{b.c} corrections

 $\begin{array}{c} \mbox{Introduction}\\ B_q \rightarrow D_q^* \ell \nu \mbox{ transition}\\ \mbox{Sum rules for the } B_q \rightarrow D_q^* \ell \nu \mbox{ transition form factors}\\ \mbox{Numerical Analysis} \end{array}$

Present work

- Form factors (SU(3) symmetry breaking)
- HQET limit of the form factors
- Branching ratio

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{array}{c} \text{Introduction}\\ B_q \to D_q^* \ell \nu \text{ transitions}\\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \text{ transition form factors}\\ \text{Numerical Analysis} \end{array}$

$B_q \rightarrow D_q^* \ell \nu$ transitions

 The B_q → D^{*}_q transition proceeds by the b → c transition at the quark level

Effective hamiltonian:

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cb} \,\overline{I} \,\gamma_\mu (1 - \gamma_5) \nu \,\overline{c} \,\gamma_\mu (1 - \gamma_5) b. \tag{1}$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

 $\begin{array}{c} \text{Introduction} \\ B_q \rightarrow D_q^* \ell \nu \text{ transitions} \\ \text{Sum rules for the } B_q \rightarrow D_q^* \ell \nu \text{ transition form factors} \\ \text{Numerical Analysis} \end{array}$

Sandwiching the effective hamiltonian between initial and final meson states

$$M = \frac{G_F}{\sqrt{2}} V_{cb} \overline{I} \gamma_{\mu} (1 - \gamma_5) \nu < D_q^*(p', \varepsilon) | \overline{c} \gamma_{\mu} (1 - \gamma_5) b | B_q(p) > .$$
(2)

Both vector and axial part contribute to the matrix element

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{array}{c} \text{Introduction}\\ B_q \to D_q^* \ell \nu \text{ transitions}\\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \text{ transition form factors}\\ \text{Numerical Analysis} \end{array}$

 Considering Lorentz and parity invariances, this matrix element can be parameterized in terms of the form factors in the following way:

$$< D_q^*(p',\varepsilon) \mid \overline{c}\gamma_{\mu}b \mid B_q(p) >= i \frac{f_V(q^2)}{(m_{B_q} + m_{D_q^*})} \varepsilon_{\mu\nu\alpha\beta} \varepsilon^{*\nu} p^{\alpha} p'^{\beta},$$
(3)

$$< D_q^*(p',\varepsilon) \mid \overline{c}\gamma_{\mu}\gamma_5 b \mid B_q(p) > = i \left[f_0(q^2)(m_{B_q} + m_{D_q^*})\varepsilon_{\mu}^* - \frac{f_+(q^2)}{(m_{B_q} + m_{D_q^*})}(\varepsilon^* p)P_{\mu} - \frac{f_-(q^2)}{(m_{B_q} + m_{D_q^*})}(\varepsilon^* p)q_{\mu} \right],$$
(4)

where $f_V(q^2)$, $f_0(q^2)$, $f_+(q^2)$ and $f_-(q^2)$ are the transition form factors and $P_\mu = (p + p')_\mu$, $q_\mu = (p - p')_\mu$

글 에 에 글 어 다

 $\begin{array}{c} \text{Introduction} \\ B_q \rightarrow D_q^* \ell \nu \text{ transitions} \\ \text{Sum rules for the } B_q \rightarrow D_q^* \ell \nu \text{ transition form factors} \\ \text{Numerical Analysis} \end{array}$

QCD Sum Rules

- Shifman & Vainshtein & Zakharov (SVZ),1979
- QCD sum rules is a framework which connects hadronic parameters with QCD parameters.
- Based on the QCD Lagrangian
- The correlation function is calculated in hadrons and quark-gluon languages
- The physical quantities are determined by matching these two representations of correlators

 $\begin{array}{c} \text{Introduction}\\ B_q \to D_q^* \ell \nu \text{ transitions}\\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \text{ transition form factors}\\ \text{Numerical Analysis} \end{array}$

Phenomenological Par Theoretical Part

The correlation function

$$\Pi_{\mu\nu}^{V;A}(p^{2},p'^{2},q^{2}) = i^{2} \int d^{4}x d^{4}y e^{-ipx} e^{ip'y}$$

< 0 | $T[J_{\nu D_{q}^{*}}(y) J_{\mu}^{V;A}(0) J_{B_{q}}(x)] \mid 0 >$ (5)

where $J_{\nu D_q^*}(y) = \overline{q} \gamma_{\nu} c$ and $J_{B_q}(x) = \overline{b} \gamma_5 q$ are the interpolating currents of D_q^* and B_q mesons, respectively and $J_{\mu}^{V} = \overline{c} \gamma_{\mu} b$ and $J_{\mu}^{A} = \overline{c} \gamma_{\mu} \gamma_5 b$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

 $\begin{array}{c} \text{Introduction} \\ B_q \to D_q^* \ell \nu \text{ transitions} \\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \text{ transition form factors} \\ \text{Numerical Analysis} \end{array}$

Phenomenological Part Theoretical Part

Outline

- 2 $B_q
 ightarrow D_q^* \ell
 u$ transitions
- 3 Sum rules for the $B_q \rightarrow D_q^* \ell \nu$ transition form factors • Phenomenological Part
 - Theoretical Part

Numerical Analysis

- Form Factors
- Heavy Quark Effective Theory (HQET)
- Branching Ratio

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

 $\begin{array}{l} B_q \to D_q^* \ell \nu \ \text{transitions} \\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \ \text{transition form factors} \\ \text{Numerical Analysis} \end{array}$

Phenomenological Part Theoretical Part

Phenomenological part of the correlation function

$$\frac{\prod_{\mu\nu}^{V,A}(p^{2}, p^{\prime 2}, q^{2}) =}{(2 + M_{\mu\nu}^{\nu}) - (2 + M_{\mu}^{\nu}) - (2 +$$

... contributions coming from higher states and continuumBy definitions:

$$<0 \mid J_{D_{q}}^{\nu} \mid D_{q}^{*}(p',\varepsilon) >= f_{D_{q}}^{*} m_{D_{q}}^{*} \varepsilon^{\nu} , \quad < B_{q}(p) \mid J_{B_{q}} \mid 0 >= -i \frac{f_{B_{q}} m_{B_{q}}^{2}}{m_{b} + m_{q}}, \tag{7}$$

◆□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

 $\begin{array}{l} \text{Introduction}\\ B_q \to D_q^* \ell \nu \text{ transition}\\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \text{ transition form factors}\\ \text{Numerical Analysis} \end{array}$

Phenomenological Part Theoretical Part

Performing summation over the polarization of the D^{*}_q meson

$$\begin{split} \Pi^{A}_{\mu\nu}(p^{2},p'^{2},q^{2}) &= \frac{f_{Bq}m^{2}_{Bq}}{(m_{b}+m_{q})}\frac{f_{D_{q}^{*}}m_{D_{q}^{*}}}{(p'^{2}-m^{2}_{D_{q}^{*}})(p^{2}-m^{2}_{Bq})} \\ &\times \quad \left[-f_{0}g_{\mu\nu}(m_{Bq}+m_{D_{q}^{*}})+\frac{f_{+}P_{\mu}p_{\nu}}{(m_{Bq}+m_{D_{q}^{*}})}+\frac{f_{-}q_{\mu}p_{\nu}}{(m_{Bq}+m_{D_{q}^{*}})}\right] \\ &+ \quad \text{excited states,} \end{split}$$

$$\Pi^{V}_{\mu\nu}(p^{2},p'^{2},q^{2}) = -\varepsilon_{\alpha\beta\mu\nu}p^{\alpha}p'^{\beta}\frac{f_{Bq}m_{Bq}^{2}}{(m_{b}+m_{s})(m_{Bq}+m_{Dq}^{*})}\frac{f_{Dq}m_{Dq}^{*}}{(p'^{2}-m_{Dq}^{2})(p^{2}-m_{Bq}^{2})}f_{V} + \text{ excited states.}$$

$$(8)$$

We chose *i*ε_{μναβ}*p*^{′α}*p*^β, *g*_{μν} and ¹/₂(*p*_μ*p*_ν ± *p*[′]_μ*p*_ν) for *f*_V, *f*₀ and *f*_±, respectively.

▲ロ▶▲圖▶▲圖▶▲圖▶ ■ の名(?)

 $\begin{array}{c} \text{Introduction} \\ B_q \to D_q^* \ell \nu \text{ transitions} \\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \text{ transition form factors} \\ \text{Numerical Analysis} \end{array}$

Phenomenological Part Theoretical Part

Outline

1 Introduction

- 2 $B_q
 ightarrow D_q^* \ell
 u$ transitions
- 3 Sum rules for the $B_q \rightarrow D_q^* \ell \nu$ transition form factors • Phenomenological Part
 - Theoretical Part

Numerical Analysis

- Form Factors
- Heavy Quark Effective Theory (HQET)
- Branching Ratio

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

∃ のへで

Introduction Sum rules for the $B_q
ightarrow D_q^* \ell
u$ transition form factors

Theoretical Part

Theoretical Part

Figure: Feynman diagrams for $B_q \rightarrow D_q^* l \nu$ (q = s, d, u) transitions.

-

 $\begin{array}{c} \text{Introduction} \\ B_q \to D_q^* \ell \nu \text{ transitions} \\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \text{ transition form factors} \\ \text{Numerical Analysis} \end{array}$

Phenomenological Par Theoretical Part

- The theoretical part of the correlation function is calculated by means of OPE, and up to operators having dimension d = 5, it is determined by the bare-loop (Fig. 1 a) and the power corrections (Fig. 1 b, c, d) from the operators with d = 3, $\langle \overline{\psi}\psi \rangle$, d = 4, $m_s \langle \overline{\psi}\psi \rangle$, d = 5, $m_0^2 \langle \overline{\psi}\psi \rangle$
- The QCD sum rules for the f_V, f₀, f₊ and f₋ is obtained by equating the phenomnological expression and the OPE expression and applying double Borel transformations with respect to the variables p² and p'²

 $\begin{array}{c} \text{Introduction}\\ B_q \to D_q^* \ell \nu \text{ transitions}\\ \text{Sum rules for the } B_q \to D_q^* \ell \nu \text{ transition form factors}\\ \text{Numerical Analysis} \end{array}$

Phenomenological Part Theoretical Part

$$f_{i}(q^{2}) = \kappa \frac{(m_{b} + m_{q})}{f_{B_{q}}m_{B_{q}}^{2}} \frac{\eta}{f_{D_{q}^{*}}m_{D_{q}^{*}}} e^{m_{B_{q}}^{2}/M_{1}^{2} + m_{D_{q}^{*}}^{2}/M_{2}^{2}}$$

$$\times [\frac{1}{(2\pi)^{2}} \int_{(m_{c} + m_{s})^{2}}^{s_{0}} ds' \int_{f(s')}^{s_{0}} ds \rho_{i}(s, s', q^{2}) e^{-s/M_{1}^{2} - s'/M_{2}^{2}}$$

$$+ \hat{B}(f_{i}^{(3)} + f_{i}^{(4)} + f_{i}^{(5)})] \qquad (9)$$

where $\eta = m_{B_q} + m_{D_q^*}$ for $i = V, \pm$ and $\eta = \frac{1}{m_{B_q} + m_{D_q^*}}$ for i = 0 are considered. Here $\kappa = +1$ for $i = \pm$ and $\kappa = -1$ for i = 0 and V

 To subtract the contributions of the higher states and the continuum, the quark-hadron duality assumption is used.

 $\begin{array}{c} \mbox{Introduction}\\ B_q \rightarrow D_q^* \, \ell \, \nu \mbox{ transitions}\\ \mbox{Sum rules for the } B_q \rightarrow D_q^* \, \ell \, \nu \mbox{ transitors}\\ \mbox{Numerical Analysis} \end{array}$

Phenomenological Part Theoretical Part

• The double Borel transformations

$$\hat{B}\frac{1}{r^{m}}\frac{1}{r'^{n}} \to (-1)^{m+n}\frac{1}{\Gamma(m)}\frac{1}{\Gamma(n)}e^{-m_{b}^{2}/M_{1}^{2}}e^{-m_{c}^{2}/M_{2}^{2}}\frac{1}{(M_{1}^{2})^{m-1}(M_{2}^{2})^{n-1}}.$$
(10)

• The f(s') is determined

$$-1 \leq \frac{2ss' + (s + s' - q^2)(m_b^2 - s - m_q^2) + (m_q^2 - m_c^2)2s}{\lambda^{1/2}(m_b^2, s, m_q^2)\lambda^{1/2}(s, s', q^2)} \leq +1.$$
(11)

The usual triangle function

$$\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ac - 2bc - 2ab$$
 (12)

M. Bayar Semileptonic $B_q \rightarrow D_q^* l \nu$ (q = s, d, u) Decays in QCD Sum Re

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

5 9 A C

 $\begin{array}{l} & \text{Introduction} \\ B_q \rightarrow D_q^* \ell \nu \text{ transitions} \\ \text{Sum rules for the } B_q \rightarrow D_q^* \ell \nu \text{ transition form factors} \\ & \text{Numerical Analysis} \end{array}$

Form Factors Heavy Quark Effective Theory (HQET) Branching Ratio

Outline

1 Introduction

- 2 $B_q
 ightarrow D_q^* \ell
 u$ transitions
- 3 Sum rules for the B_q → D^{*}_qℓν transition form factors
 Phenomenological Part
 Theoretical Part

4 Numerical Analysis

- Form Factors
- Heavy Quark Effective Theory (HQET)
- Branching Ratio

ヘロト 人間 ト イヨト イヨト

≡ nar

 $\begin{array}{l} & \text{Introduction} \\ B_q \rightarrow D_q^* \ell \nu \text{ transitions} \\ \text{Sum rules for the } B_q \rightarrow D_q^* \ell \nu \text{ transition form factors} \\ & \text{Numerical Analysis} \end{array}$

Form Factors Heavy Quark Effective Theory (HQET) Branching Ratio

Form Factors

• The allowed physical region for q^2 is $m_l^2 \leq q^2 \leq (m_{B_q} - m_{D_q^*})^2$

$f_i(0)$	$B_{s} ightarrow D_{s}^{*} \ell u$	$B_d ightarrow D_d^* \ell u$	$B_u ightarrow D_u^* \ell u$
$f_V(0)$	0.36 ± 0.08	0.47 ± 0.13	$\textbf{0.46} \pm \textbf{0.13}$
$f_0(0)$	0.17 ± 0.03	0.24 ± 0.05	0.24 ± 0.05
$f_{+}(0)$	0.11 ± 0.02	0.14 ± 0.025	0.13 ± 0.025
<i>f</i> _(0)	-0.13 ± 0.03	-0.16 ± 0.04	-0.15 ± 0.04

Table: The value of the form factors at $q^2 = 0$

 Our form factors work in the inteval 0 ≤ q² ≤ 10GeV² and truncated at ≃ 10 GeV²

 $B_q \rightarrow D_q^* \ell \nu$ transitions Sum rules for the $B_q \rightarrow D_q^* \ell \nu$ transition form factors Numerical Analysis

Form Factors Heavy Quark Effective Theory (HQET) Branching Ratio

 To extend of the results to whole physical region we look for a fit parameterizations

$$f_i(q^2) = \frac{f_i(0)}{1 + \alpha \hat{q} + \beta \hat{q}^2 + \gamma \hat{q}^3 + \lambda \hat{q}^4},$$
 (13)

where $\hat{q} = q^2/m_{B_q}^2$.

	f(0)	α	β	γ	λ
f_V	0.38	-2.53	2.77	-2.41	0.03
f ₀	0.18	-1.77	0.98	-0.23	-3.50
f_+	0.12	-2.90	3.66	-3.72	-1.69
f_	-0.15	-2.63	2.72	-0.99	-6.48

Table: Parameters appearing in the form factors of the $B_s \rightarrow D_s^*(2112)\ell\nu$ for $M_1^2 = 19 \text{ GeV}^2$, $M_2^2 = 5 \text{ GeV}^2$.

э

< ロ > < 同 > < 回 > < 回 > < □ > <

Introduction Numerical Analysis

Form Factors

Figure: The dependence of f_V on q^2 at $M_1^2 = 19 \text{ GeV}^2$, $M_2^2 = 5 \text{ GeV}^2$, $s_0 = 35 \text{ GeV}^2$ and $s'_0 = 6 \text{ GeV}^2$.

ヘロン 人間 とくほとくほど

 $\begin{array}{c} \mathrm{Introduction}\\ B_q \to D_q^*\,\ell\nu \ \mathrm{transitions}\\ \mathrm{Sum}\ \mathrm{rules}\ \mathrm{for}\ \mathrm{the}\ B_q \to D_q^*\,\ell\nu \ \mathrm{transition}\ \mathrm{form}\ \mathrm{factors}\\ \mathrm{Numerical}\ \mathrm{Analysis}\end{array}$

Form Factors Heavy Quark Effective Theory (HQET) Branching Ratio

Figure: The dependence of f_0 on q^2 at $M_1^2 = 19 \text{ GeV}^2$, $M_2^2 = 5 \text{ GeV}^2$, $s_0 = 35 \text{ GeV}^2$ and $s'_0 = 6 \text{ GeV}^2$.

(日)

Introduction Numerical Analysis

Form Factors

Figure: The dependence of f_+ on q^2 at $M_1^2 = 19 \text{ GeV}^2$, $M_2^2 = 5 \text{ GeV}^2$, $s_0 = 35 \text{ GeV}^2$ and $s'_0 = 6 \text{ GeV}^2$.

Semileptonic $B_q
ightarrow D_q^* l
u \; (q=s,\,d,\,u)$ Decays in QCD Sum Ru

ヘロン 人間 とくほとくほど

Introduction Numerical Analysis

Form Factors

Figure: The dependence of f_{-} on q^2 at $M_1^2 = 19 \ GeV^2$, $M_2^2 = 5 \text{ GeV}^2$, $s_0 = 35 \text{ GeV}^2$ and $s'_0 = 6 \text{ GeV}^2$.

< □ > < 同 >

▶ < ⊒ ▶

 $\begin{array}{l} & \text{Introduction} \\ B_q \rightarrow D_q^* \ell \nu \text{ transitions} \\ \text{Sum rules for the } B_q \rightarrow D_q^* \ell \nu \text{ transition form factors} \\ & \text{Numerical Analysis} \end{array}$

Form Factors Heavy Quark Effective Theory (HQET) Branching Ratio

Outline

1 Introduction

- $\bigcirc B_q o D_q^* \ell
 u$ transitions
- 3 Sum rules for the B_q → D^{*}_qℓν transition form factors
 Phenomenological Part
 Theoretical Part

Numerical Analysis

- Form Factors
- Heavy Quark Effective Theory (HQET)
- Branching Ratio

ヘロト 人間 ト イヨト イヨト

≡ nar

 $\begin{array}{c} \text{Introduction} \\ B_q \to D_q^*\,\ell\nu \text{ transitions} \\ \text{Sum rules for the } B_q \to D_q^*\,\ell\nu \text{ transition form factors} \\ \text{Numerical Analysis} \end{array}$

Form Factors Heavy Quark Effective Theory (HQET) Branching Ratio

HQET

•
$$m_b \to \infty, \ m_c = \frac{m_b}{\sqrt{z}}, \ \sqrt{z} = y + \sqrt{y^2 - 1}$$

$$y = \nu \nu' = \frac{m_{B_q}^2 + m_{D_q^*}^2 - q^2}{2m_{B_q}m_{D_q^*}}$$
(14)

where ν and ν' are the four-velocities of the initial and final meson states

M. Bayar

•
$$M_1^2 = 2T_1m_b$$
 and $M_2^2 = 2T_2m_c$

$$R_{1(2)[3]} = \left[1 - \frac{q^2}{(m_B + m_D^*)^2}\right] \frac{f_{V(+)[-]}(y)}{f_0(y)},$$

$$R_{4(5)} = \left[1 - \frac{q^2}{(m_B + m_D^*)^2}\right] \frac{f_{+(-)}(y)}{f_V(y)},$$

$$R_6 = \left[1 - \frac{q^2}{(m_B + m_D^*)^2}\right] \frac{f_{-}(y)}{f_{+}(y)}.$$
(15)

Semileptonic $B_q o D_q^* l
u \; (q=s,d,u)$ Decays in QCD Sum Ru

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

 $\begin{array}{c} \text{Introduction} \\ B_q \rightarrow D_q^* \ell \nu \text{ transitions} \\ \text{Sum rules for the } B_q \rightarrow D_q^* \ell \nu \text{ transition form factors} \\ \text{Numerical Analysis} \end{array}$

Form Factors Heavy Quark Effective Theory (HQET) Branching Ratio

У	1 (zero recoil)	1.1	1.2	1.3	1.4	1.5
$q^2(GeV^2)$	10.69	8.57	6.45	4.33	2.20	0.08
R_1	1.34	1.31	1.25	1.19	1.10	0.95
R_2	0.80	0.99	1.10	1.22	1.30	1.41
R_3	-0.80	-0.79	-0.80	-0.81	-0.80	-0.80
R_4	0.50	0.64	0.77	0.94	1.20	1.46
R_5	-0.50	-0.51	-0.56	-0.62	-0.71	-0.89
R_6	-0.80	-0.67	-0.64	-0.61	-0.55	-0.53
<i>R</i> ₁ [1]	1.31	1.30	1.29	1.28	1.27	1.26
R ₂ [1]	0.90	0.90	0.91	0.92	0.92	0.93

Table: The values for the R_i and comparison of $R_{1,2}$ values with the predictions of [1].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

 $\begin{array}{l} & \text{Introduction} \\ B_q \rightarrow D_q^* \ell \nu \text{ transitions} \\ \text{Sum rules for the } B_q \rightarrow D_q^* \ell \nu \text{ transition form factors} \\ & \text{Numerical Analysis} \end{array}$

Form Factors Heavy Quark Effective Theory (HQET) Branching Ratio

Outline

1 Introduction

- 2 $B_q
 ightarrow D_q^* \ell
 u$ transitions
- 3 Sum rules for the B_q → D^{*}_qℓν transition form factors
 Phenomenological Part
 Theoretical Part

Numerical Analysis

- Form Factors
- Heavy Quark Effective Theory (HQET)
- Branching Ratio

ヘロト 人間 ト イヨト イヨト

≡ nar

 $\begin{array}{c} \mbox{Introduction} \\ B_q \rightarrow D_q^* \ell \nu \mbox{ transitions} \\ \mbox{Sum rules for the } B_q \rightarrow D_q^* \ell \nu \mbox{ transition factors} \\ \mbox{Numerical Analysis} \\ \end{array} \begin{array}{c} \mbox{Form Factors} \\ \mbox{Heavy Quark Effective Theory (HQ Branching Ratio} \\ \mbox{Branching Ratio} \\ \end{array}$

	$B_{S} ightarrow D_{S}^{*} \ell \nu$	$B_d ightarrow D_d^* \ell u$	$B_u \rightarrow D_u^* \ell \nu$
Present study	$(1.89 - 6.61) imes 10^{-2}$	$(4.36 - 8.94) imes 10^{-2}$	$(4.57 - 9.12) \times 10^{-2}$
CQM model	$(7.49 - 7.66) \times 10^{-2}$	$(5.9 - 7.6) \times 10^{-2}$	$(5.9 - 7.6) \times 10^{-2}$
Experiment	-	$(5.35 \pm 0.20) imes 10^{-2}$	$(6.5 \pm 0.5) imes 10^{-2}$

Table: Comparison of the branching ratio of the $B_q \rightarrow D_q^* \ell \nu$ decays in present study, the CQM model [2] and the experiment [3].

◆ロ▶ ◆□▶ ◆三▶ ◆三▶ ● ○○へ⊙

Introduction $B_q \rightarrow D_q^* \ell \nu$ transitions Sum rules for the $B_q \rightarrow D_q^* \ell \nu$ transition form factors **Numerical Analysis**

Form Factors Heavy Quark Effective Theory (HQET) Branching Ratio

- M. Neubert, Phys. Rev. **D46** (1992) 3914.
- Shu-Min Zhao, Xiang Liu, Shuang-Jiu Li, Eur. Phy. J. C51 (2007) 601.
- W.M. Yao et al., Particle Data Group, J. Phys. G33 (2006) 1.