Stau Production at Linear Colliders

An update on

O. Çakır Ankara University

Ankara HEP Days 2009, 29-30 May 2009

eniltuO

- >>An <u>update</u> on the previous study "hep-ph/0703121" taking into account both the beam spectra and the detector effects.
- New study on the angular distributions of staus from direct production, and from right-handed selectron and smuon decays.
- >New MC analysis done within JAS3 framework (stdhep).
- >Includes CLIC001 detector simulation (sleio) and analysis.

Framework

- Supersymmetry (SUSY) is one of the most widely studied theory of physics beyond the Standard Model (SM). Searches for signatures of new physics predicted within the SUSY models are central to the physics program of the upcoming experiments at the TeV range.
- Our study is based on the scenarios in the mSUGRA model with the stau NLSP.
- Meta-stable heavy stau in certain points of parameter space
- mSUGRA parameters:

[Feng05]

m1/2 = common gaugino mass m0 = common scalar mass A0= trilinear coupling tan β = ratio of VEVs Sign(mu) = sign of Higgs mixing parameter

mSUGRA Points

 Consistent with present data from particle physics and BBN constraints

- Astrophysics and cosmology constrain metastable particles such as staus
- Agreement between calculated and observed abundance of light elements

Points:

- ϵ low m₀, low m_{1/2}, low tan(beta)
- ζ high m₀, high m_{1/2}, high tan(beta)
- η low m₀, high m_{1/2}, high tan(beta)
- θ high m₀, high m_{1/2}, low tan(beta)

De Roeck et al. 05

O. Cakir *et al.* 07

in some certain parameter space of mSUGRA, good agreement between BBN calculations and observed 6,7Li abundances

mSUGRA benchmark scenarios with stau NLSP:

Three benchmark points with astrophysical constraints

Agreement between BBN calculations and the observed Li abundances

Stau pair production

SUSY R-parity conservation \rightarrow pair production at colliders

$$\sigma = \frac{\pi \alpha^2 \beta^3}{3s} \left[(1 - P_- P_+) + \frac{I_3 \cos^2 \theta_{\tilde{\tau}} + \sin^2 \theta_W}{2 \cos^2 \theta_W \sin^2 \theta_W} [v_e (1 - P_- P_+) - a_e (P_- - P_+)] P_{\gamma Z} \right]$$
$$+ \frac{(I_3 \cos^2 \theta_{\tilde{\tau}} + \sin^2 \theta_W)^2}{16 \cos^4 \theta_W \sin^4 \theta_W} [(v_e^2 + a_e^2)(1 - P_- P_+) - 2v_e a_e (P_- - P_+)] P_{ZZ} \right]$$

$$P_{ZZ} = rac{s^2}{(s-m_Z^2)^2 + m_Z^2\Gamma_Z^2} \quad , \qquad P_{\gamma Z} = rac{s(s-m_Z^2)}{(s-m_Z^2)^2 + m_Z^2\Gamma_Z^2}$$

Measuring the cross section from polarized beams we obtain the mixing angle and the mass of stau.

ISAJET/ISASUGRA

```
📧 IsaJet : bash 🥯
                                                      ×
File Edit View Scrollback Bookmarks Settings Help
ocakir@linux-ww1m:~/IsaJet> ./isasugra.x
 ENTER output filename in single quotes:
'point1.txt'
ENTER SUSY Les Houches Accord filename [/ for none]:
point1.slha
 ENTER Isawig (Herwig interface) filename [/ for none]:
/
 ENTER 1 for mSUGRA:
 ENTER 2 for mGMSB:
 ENTER 3 for non-universal SUGRA:
 ENTER 4 for SUGRA with truly unified gauge couplings:
 ENTER 5 for non-minimal GMSB:
 ENTER 6 for SUGRA+right-handed neutrino:
 ENTER 7 for minimal anomaly-mediated SUSY breaking:
 ENTER 8 for non-minimal AMSB:
 ENTER 9 for mixed moduli-AMSB:
 ENTER 10 for Hypercharged-AMSB:
1
ENTER M_0, M_(1/2), A_0, tan(beta), sgn(mu), M_t:
20,440,-25,15,1,172
 Run Isatools? Choose 2=all, 1=some, 0=none:
0
ocakir@linux-ww1m:~/IsaJet>
🔲 IsaJet : bash
```

The properties of the benchmark				e	ς	η	θ
noints of mSI IGDA				20	100	20	330
	points c		$m_{1/2}$	440	1000	1000	3000
	Delint 4		A_0	-25	-127	-25	0
	POINT I:	This point could be	$\tan\beta$	15	21.5	23.7	10
	t= 33.7 day	at I HC TI C and CI TC	$\operatorname{sign}(\mu)$	+1	+1	+1	$^{+1}$
	(- 33.7 uay		$\tilde{e}_L, \tilde{\mu}_L$	303	676	669	1982
			$\tilde{e}_R, \tilde{\mu}_R$	168	382	369	1140
			$\tilde{\nu}_e, \tilde{\nu}_\mu$	289	666	659	1968
	Point 2:		$\tilde{\tau}_1$	154	346	327	1140
				304	666	659	1966
	t= 19.4 day These points probed at LHC Point 3: t=0.7 day	These points could be probed at LHC and CLIC	$\tilde{\nu}_{\tau}$	284	651	643	1944
			\tilde{u}_L, \tilde{c}_L	935	1992	1989	5499
			\tilde{u}_R, \tilde{c}_R	902	1913	1910	5248
			\tilde{d}_L, \tilde{s}_L	938	1994	1991	5500
			\tilde{d}_R, \tilde{s}_R	899	1903	1900	5217
			\tilde{t}_1	703	1534	1541	4285
			\tilde{t}_2	908	1857	1855	5130
			\tilde{b}_1	858	1823	1819	5104
		This point could be	\tilde{b}_2	894	1874	1867	5203
	Point 4:		\tilde{g}	1023	2187	2186	6089
	+-1 25 4	probed only at CLIC	$\tilde{\chi}_1^0$	179	425	424	1336
	T=1.30 S		$\tilde{\chi}_2^0$	337	802	802	2467
			$\tilde{\chi}_1^{\pm}$	338	804	804	2472

The total cross section (pb)

We use PYTHIA with the full ISASUGRA spectrum including both initial and final state radiation (ISR+FSR)

	Benchmark points	E	ζ	η	θ
	$m_{\tilde{\tau}_1}(\text{GeV}) =$	154	346	327	1140
	500	4.799×10^{-2}	_	_	-
$\sqrt{s}(\text{GeV})$	1000	2.441×10^{-2}	$9.230 imes 10^{-3}$	1.075×10^{-2}	-
	3000	3.665×10^{-3}	$3.142 imes 10^{-3}$	$3.197 imes 10^{-3}$	7.235×10^{-4}
	5000	1.432×10^{-3}	1.299×10^{-3}	$1.311 imes 10^{-3}$	7.889×10^{-4}

Number of stau pairs produced at: Ecm = 500, 1000 GeV with L=200 fb^(-1) Ecm = 3000, 5000 GeV with L=400 fb^(-1)

Distributions of staus at point ε

$10^{5} \\ 10^{4} \\ 10^{3} \\ 10^{2} \\ 10^{1} \\ 10^{0} \\ 1,150 \\ 1,200 \\ 1,250 \\ 1,300 \\ 1,350 \\ 1,400 \\ 1,450 \\ 1,500$

stau energy

stau momentum pt

Includes the ISR and beamstrahlung effects

Distributions of staus at point ζ

stau momentum pt

stau energy

No ISR and beamstrahlung effects

e- %90 e+ %60 accuracies on

the measure: $(\Delta m_{\tilde{\tau}_{i}}, \Delta \cos \theta_{\tilde{\tau}})$

(0.7, 0.005) for epsilon ϵ ϵ (2.4, 0.01) for zeta, eta at Ecm=1000 GeV; (8, 0.02) for theta at

Ecm=3000 GeV

Stau pair production at benchmark points and optimal energies for slow-staus with beta<0.4

330 GeV for ε
730 GeV for ζζ
700 GeV for η
2500 GeV for θ

Angular distributions of staus: <u>blue</u> sele_R-->stau_1X, <u>green</u> smuon_R->stau_1X and<u>red</u> stau_1

The coresponding values of N for staus stopping in different detector parts for the benchmark points

$\sqrt{s}({\rm GeV})$	500	1000	3000	Optimal for	Maximal including
$L_{int}({\rm fb}^{-1})$	200	200	400(1000)	pair prod'n	other prod'n processes
ε	34	4	4(10)	1500	1700
ζ	-	12	4(10)	254	700
η	I	10	4(10)	370	600
θ	-	-	8(20)	56(140)	140(350)

Stau NLSP

- For small tanβ, the mass splitting between the stau(1), selectron(R) and smuon(R) is small, rendering them co-NLSP's which decay into leptons and gravitinos.
- In the large $\tan\beta$ region, the stau is the sole NLSP.
- Interest on the decay mode

$$ilde{ au} o au ilde{G}$$

Stau->tau+G events as seen in CLICO01

Stau->tau+G events (rho-z)

CONCLUSIONS

•We have discussed the measurement of the stau mass and the mixing angle of staus resulting a good resolution (δm , $\delta cos \theta$).

•Stau decay to tau and gravitino is also implemented, and TAUOLA is used for further tau to hadronization, CLIC001 can detect stau (long-lived) with ionized tracks.

•The optimal energies (\sim 2m) for having largest number of stoppable staus are different from the center of mass energies where the maxima of the pair production cross section appear.

•6,7Li friendly point theta features relatively heavy sparticles beyond the reach of either the LHC or the ILC, but within the kinematic reach of CLIC.

