

SM photon production measurements at CMS

on behalf of the CMS collaboration Kadir Ocalan, Necmettin Erbakan University "Ankara YEF Günleri 2015" Workshop, METU, Ankara

Outline

- Photon production
- Photon reconstruction
- Photon identification and isolation
- Isolated photon differential cross section (<u>Phys. Rev. D 84, 052011</u>)
- Photon + jets differential cross sections (JHEP 06 (2014) 009)
- Z/photon + 1 jet rapidity distributions (<u>Phys. Rev. D 88, 112009</u>)
- Diphoton differential cross sections (Eur. Phys. J. C 74 (2014) 3129)
- Z + jets / photon + jets cross section ratios (CMS-PAS-SMP-14-005)
- Conclusion
- Back-up slides
- In this talk, CMS SMP QCD photon public results are reviewed:
- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP#Photon_jets</u>
- EWK photon results will not be covered here:
- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP#gamma_V</u>

Photon production

- Production mechanisms
 - Direct photons
 - quark-gluon compton-like scattering
 - quark-anti-quark annihilation
 - Fragmentation photons
- Physics Motivations
 - testing pQCD to high precision
 - constraining parton distribution functions (PDFs)
 - modeling backgrounds for BSM and Higgs
 - valuable for jet energy calibration and missing energy modeling
 - reference for similar measurements in heavy ion collisions

Photon reconstruction

- Reconstructed from the energy deposits in the ECAL by grouping crystals into 'superclusters':
 - In the ECAL barrel region ($|\eta| < 1.479$), 35 crystals wide in ϕ and 5 crystals in η
 - In the ECAL endcap region (1.479 < $|\eta|$ < 3.0), arrays of 5x5 crystals in x-y plane
 - Preshower energy is included
- Hybrid (in EB) and Multi5x5 (in EE) superclustering algorithms are used
- Energy is corrected for better resolution (the material losses in front of the tracker)

Photon identification / isolation

- Two main methods to discriminate a signal photon from a background one:
 - the shape of the shower measured in the ECAL crystals (σ_{nn})
 - the isolation energy in a cone around photon direction (Iso)
- Calorimetric or PF-particle flow isolation sums and shower shape variable are accompanied by other selections (like H/E, R₉=E_{3X3}/E_{RAW}, ...)
- For very loosely isolated photons, template fitting techniques are used for the extraction of signal (prompt) photons
- Caution: Above identification requirements are valid for data and LO MC generators, for NLO tools Iso < 5 GeV for ΔR =0.4 cone is used

Isolated photon cross section

- Single photon differential cross section
 - using 36 /pb data at 7 TeV
 - pT: 25 400 GeV
 - |η| < 2.5

 $\frac{d^2\sigma}{dE_{\rm T}d\eta} = \frac{N^{\gamma} \cdot U}{L \cdot \varepsilon \cdot \Delta E_{\rm T} \cdot \Delta \eta}$

- Signal photon extraction by two methods
 - Conversion : E_T^{ECAL}/p_T^{TRK} ratio
 - Isolation: $Iso = Iso_{TRK} + Iso_{ECAL} + Iso_{HCAL}$

Signal region	Sideband region
Photon conversion method	
< 0.05	< 0.05
$<(2.0 + 0.001E_{\rm T})$	$(2.0 + 0.001E_{\rm T}) - (5.0 + 0.001E_{\rm T})$
$<(4.2 + 0.003E_{\rm T})$	$<(4.2 + 0.003E_{\rm T})$
$<(2.2 + 0.001E_{\rm T})$	$<(2.2 + 0.001E_{\rm T})$
< 0.010	0.010-0.015
< 0.030	0.030-0.045
Isolation method	
< 0.05	< 0.05
< 0.010	0.0110-0.0115
< 0.028	>0.038
	Signal region Phot <0.05 $<(2.0 + 0.001E_T)$ $<(4.2 + 0.003E_T)$ $<(2.2 + 0.001E_T)$ <0.010 <0.05 <0.05 <0.028

Measured photon purities from conversion (top) and isolation (bottom) methods

Isolated photon cross section

- Data corrected for efficiency and unfolding factors
- Theory predictions by JETPHOX NLO with CT10 PDFs
- Good agreement between data and predictions
- Overestimation of data at low ET, but within uncertainties

Photon + jets cross sections

- Triple differential cross section in 8 different photon - jet η configurations
- Photon+jet production is directly sensitive to gloun PDF in proton (<u>Nucl.</u> <u>Phys. B 860 (2012) 311–338</u>)
- Examined kinematic region:
 - 40 < photon pT < 300 GeV</p>
 - one or more jet with pT > 30 GeV
 - both objects with $|\eta| < 2.5$
- Data unfolded to correct for detector effects after efficiency corrections and background subtraction:
 - ~70-90% total photon selection efficiency
 - ~20-70% purity for loosely isolated photon

Photon + jets cross sections

- Theory predictions:
 - JETPHOX NLO (CT10 PDF)
 - SHERPA LO (CTEQ6M PDF)
- Agreement with data over most of the kinematic regions
- Theories reproduce ratios fairly well
- Exception for cases of photons measured in 2.1<|η(γ)|<2.5 for central and forward jets
- SHERPA tends to be lower than JETPHOX

Z/photon + 1 jet rapidity distributions

 Measured rapidity distributions of Z/y and exactly 1 jet

Rapidity:
$$y = \frac{1}{2} \ln \left[\frac{(E + p_z)}{(E - p_z)} \right]$$

- $Z/\gamma + 1$ jet selection:
 - leptons with pT>20 GeV and $|\eta|$ < 2.1
 - dilepton mass 76 < mll < 106 GeV
 - photon pT > 40 GeV and $|\eta| < 1.44$
 - one jet with pT > 30 GeV and $|\eta| < 2.4$
- Choices for theoretical tools:
 - SHERPA+APACIC++(PS)+PYTHIA(hadron ization) with NLO CTEQ6.6M PDF
 - MADGRAPH+PYTHIA(PS+hadronization) with LO and NLO CTEQ6 PDF
- Owens (MCFM) for γ+jet (Z+jet) NLO calculation

• $y_{z(\gamma)}$ and y_{jet} agree with NLO predictions, SHERPA, and MADGRAPH • Insufficient statistical precision for γ part (effective L_{int} = 4.9 pb⁻¹)

Z/photon + 1 jet rapidity distributions

- Construct y_{sum} and y_{dif} from y_V (V=Z or y) and y_{jet} : $y_{sum} = \frac{|y_{Z/Y} + y_{jet}|}{2}$ $y_{dif} = \frac{|y_{Z/Y} y_{jet}|}{2}$
- Comparison of γ + 1 jet data with tools:
 - for y_{sum}: consistent data description by all predictions
 - for y_{dif}: best described by Owens NLO better than 10%, SHERPA and MADGRAPH exhibit discrepancies at forward values

Diphoton differential cross sections

- Measurement of photon pairs with 5 /fb at 7 TeV data
 - as functions of $m_{\gamma\gamma}$, $pT_{\gamma\gamma}$, $\Delta \phi_{\gamma\gamma}$, and $\cos\theta^*(\gamma\gamma)$
- Spectrum available for $pT_{\chi_{1(2)}}>40(25)$ GeV, $|\eta|<2.5$, $\Delta R>0.45$
- Constituting major background for Higgs (JHEP 1306 (2013) 081)
- Random Cone isolation (ΔR<0.4) in azimuthal separation

Diphoton differential cross sections

- Measured data are compared to varieties of generators
- Best description of data by Sherpa and 2yNNLO
- Measured total xsec:σ = 17.2 ± 0.2(stat.) ± 1.9(syst.) ± 0.4(lum.) pb

More differential distributions in <u>Backups</u>

Theoretical settings:

- LO: Sherpa with CT10 PDF
- NLO: Diphox+Gamma2MC, Resbos with CT10 PDF
- NNLO: 2yNNLO with MSTW2008 PDF
- all use $m_{\gamma\gamma}$ as μ_F and μ_R

Z + jets / photon + jets cross section ratios

- Cross section and ratios with 19.7 /fb data at 8 TeV
- Modeling missing energy (Z->vv) by γ + jets
- Measured purity ranges between 70-90 % with RC isolation approach
- MadGraph (CTEQ6L1 PDF) and Sherpa (CT10 PDF) with NNLO corrections
- BlackHat NLO with MSTW2008 PDF for theory comparison

Z + jets / photon + jets cross section ratios

- Measured ratios of cross sections for the phase space:
 - Z/photon pT > 100 GeV, $|y_V| < 1.4$
 - Njets \geq 1, 2, 3 and HT > 300 GeV for Njets \geq 1
- Some systematics cancel, improved precision

 $Ratio = \frac{\sigma_{Z \to ll}(p_T^Z > 314 GeV)}{\sigma_{\gamma}(p_T^{\gamma} > 314 GeV)} = 0.0322 \pm 0.0008(stat) \pm 0.0020(syst)$

More ratios in **back-ups**.

Conclusion

- CMS has explored photon productions in most relevant areas with 7 TeV data
- Data comparisons with LO and NLO predictions are presented on photon differential cross sections
- Theoretical predictions overall agree with data (Sherpa, JETPHOX, and 2yNNLO perform well) but show some discrepancies
- CMS SM physics program will continue to provide an excellent benchmark to tune the predictions with the ongoing photon analyses of the 8 TeV dataset (Run 1) and the planned photon analyses of 13 TeV dataset for the next LHC run (Run 2)

"Thank you for your attention"

"Back-up slides"

LHC operations

- Completed in 2008, CERN, Geneva - pp collisions at Physics runs in 2010 – 2012 Run 1 - Long Shutdown (LS1) 2013 - 2014 $v_{s} = 8$ TeV for 2012 - Run 2 from 2015 starts at vs = 13 TeV **v**s = **13 TeV** from 2015 towards 14 TeV (design) - also Pb+Pb, p+Pb - LS2 planned 2018-2019 - Run 3 till 2022 - HL-LHC from 2025 ATL **CERN** Prévess FRANCE MS *(Ld*) LHC 27 km ⁻¹ in 2010 - Peak lumi in Run 1: 0.75x10³⁴ cm⁻²s⁻¹ (design: 1x10³⁴) in 2011 - Run2/3: 1.5→2x10³⁴ cm⁻²s⁻¹, 300 fb⁻¹ till 2022 <mark>1 ⁻¹ in 201</mark>2 - HL-LHC from 2025: 5x10³⁴ cm⁻²s⁻¹, 3000 fb⁻¹ in 10 years

7 TeV for 2010 - 2011

CMS detector

Photon Physics @ LHC

- Kinematical region probed by existing prompt photon measurements at fixed-target (Fermilab) and collider (ISR, RHIC, SppS, Tevatron) energies, and expected range probed at the LHC at central (y=0) and forward (y=2-5) rapidities.
- More than 30 years of experimental data varying from 20 GeV to 14 TeV energies

CMS central rapidity coverage: ~0.007 < x < 0.114
Extends to a much lower x region for forward rapidity

$$\mathbf{x} = \mathbf{x}_{\mathrm{T}} \times \mathbf{e}^{-\mathrm{y}} = 2\mathbf{p}_{\mathrm{T}} \times \mathbf{e}^{-\mathrm{y}} / \sqrt{\mathrm{s}}$$

 LHC probes a couple of orders of magnitude lower parton momentum fraction x compared to previous measurements (<u>R. Ichou and D. d'Enterria, Phys. Rev. D 82, 014015 (2010)</u>)

Diphoton template fitting

Diphoton differential distributions

Z/y ratios

